Functional analytic approach to non-local self-improving properties

Olli Saari, University of Bonn

Institute Mittag–Leffler, Workshop on nonlinear parabolic PDEs, June 2018

- Elliptic equations and higher integrability of gradient. Meyers' estimate.
- Non-local equations and higher differentiability. Kuusi-Mingione-Sire theorem.
- A functional analytic approach.
- Evolutionary variant.

Part I: Elliptic equations and higher integrability of gradient.

Lemma (Gehring)

Let p > 1 be fixed and let $w, f \ge 0$ be locally integrable functions satisfying

$$\left(\int_{B} w^{p}\right)^{1/p} \leq C \int_{2B} w + \int_{2B} f$$

for all balls B. Then there is $\epsilon > 0$ such that for all balls B

$$\left(\int_{B} w^{p+\epsilon}\right)^{1/(p+\epsilon)} \leq C \int_{2B} w + C \left(\int_{2B} f^{p+\epsilon}\right)^{1/(p+\epsilon)}$$

- This is the open-ended property of reverse Hölder classes (f = 0).
- When p o 1, the analogous result is the inclusion $A_\infty \subset \mathrm{RHI}_{1+\epsilon}.$

Consider the following set-up:

- A: ℝⁿ → L(ℝⁿ, ℝⁿ) is a measurable map into real n × n matrixes satisfying λ|ξ|² ≤ ξ · A(x)ξ and |A(x)| ≤ Λ for fixed constants λ, Λ ∈ (0,∞) and all x ∈ ℝⁿ.
- $f \in L^{2+\epsilon_1}_{loc}(\mathbb{R}^n)$ is a real valued source term.
- $u \in W^{1,2}(\mathbb{R}^n)$ is a weak solution to

$$-\operatorname{div}(A\nabla u)=\operatorname{div} f.$$

Theorem (Meyers' estimate (1963))

The solution u satifies $u \in W^{1,2+\epsilon_2}_{loc}(\mathbb{R}^n)$ for some $\epsilon_2 \in (0,\epsilon_1)$.

Remarks:

- A priori, one only assumed $W^{1,2}(\mathbb{R}^n)$. There is improvement in local integrability.
- Meyers' estimate builds on earlier work by Bojarski (the planar case, systems). It is also valid for complex equations.
- Systems (in all dimensions) were treated by Elcrat and Meyers.
- And so on.

The usual proof

• a Caccioppoli estimate:

$$\int_{B_r} |\nabla u|^2 \lesssim r^{-2} \int_{B_{2r}} |u|^2 + \int_{B_{2r}} f^2$$

(weak formulation with test function $u\varphi^2$ where the smooth bump satisfies $1_{B_r} \leq \varphi \leq 1_{B_{2r}}$)

• the Sobolev-Poincaré inequality:

$$r^{-1} \left(\int_{B_{2r}} |u - u_{B_{2r}}|^2 \right)^{1/2} \lesssim \left(\int_{B_{3r}} |\nabla u|^{2*} \right)^{1/2*}$$

where $1/n = 1/2_* - 1/2$.

- interpolation of L^p norms (Hölder) to lower the exponent on the right.
- Gehring's lemma to win an epsilon in the exponent on the left.

Part II: Non-local equations

Consider the functional

$$\mathcal{F}_1(u) = \int_{\mathbb{R}^n} \nabla u(x) \cdot A(x) \nabla u(x) \, dx$$

with natural domain $W^{1,2}(\mathbb{R}^n)$. Morally, this is perturbation of $\int |\nabla u|^2 dx$

Equation $-\operatorname{div}(A\nabla u) = f$, that is,

$$\int_{\mathbb{R}^n} A(x) \nabla u(x) \cdot \nabla \varphi(x) \, dx = \int_{\mathbb{R}^n} f(x) \varphi(x) \, dx, \quad \forall \varphi \in C_c^\infty$$

means the first variation of $\mathcal{F}_1(u) - \int f u$ vanishing.

The natural domain of $-\operatorname{div}(A\nabla \cdot)$ is again $W^{1,2}(\mathbb{R}^n)$ and its range is the dual space $W^{1,2}(\mathbb{R}^n)^*$.

Consider the following seminorm

$$|u|_{W^{s,p}(\mathbb{R}^n)} = \iint rac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx dy, \quad 0 < s < 1, \quad p > 1$$

and the norm

$$||u||_{W^{s,p}(\mathbb{R}^n)} = ||u||_{L^p(\mathbb{R}^n)} + |u|_{W^{s,p}(\mathbb{R}^n)}$$

- Define: $u \in W^{s,p}(\mathbb{R}^n)$ if $u \in L^p$ and $||u||_{W^{s,p}(\mathbb{R}^n)} < \infty$.
- In systematical study of function spaces $W^{s,p} = B^s_{p,p}$.
- Not to be confused with the Bessel potential spaces H^{s,p} = F^s_{p,2} that only coincide with W^{s,p} when p = 2.

Fractional equations

Consider then

$$\mathcal{F}(u) = \iint A(x,y) rac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx dy, \quad 0 < s < 1$$

and its first variation

$$\mathcal{E}_{s}(u,\varphi) := \iint A(x,y) \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n+sp}}$$

(assume $\lambda \leq |A(x,y)| \leq \lambda^{-1}$ with $\lambda \in (0,1)$).

- The natural domain for the functional is $\dot{W}^{s,p}(\mathbb{R}^n)$.
- Its derivative is a functional defined through the form \mathcal{E}_s . Not clear where.

Theorem (Kuusi–Mingione–Sire (2015))

Denote $2_* = 2n/(n+2s)$, let $\delta_0 > 0$, take $f \in L^{2_*+\delta_0}_{loc}(\mathbb{R}^n)$. Suppose that $u \in W^{s,2}(\mathbb{R}^n)$ is a solution in the sense that for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ it holds

$$\iint A(x,y) \frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{n+2s}} \, dxdy = \int f\varphi \, dx.$$

Then $u \in W^{s+\delta_1,2+\delta_1}_{loc}(\mathbb{R}^n)$ for some $\delta_1 > 0$.

Remark. There is gain in both integrability and differentiability. The right hand side can be more general, but this will be discussed later.

- High level: Establish a reverse Hölder inequality for a suitable quantity and prove an appropriate Gehring's lemma.
- Dual pairs: write

$$|u|_{W^{s,p}(\mathbb{R}^n)} = \iint \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} = \int_{\mathbb{R}^n \times \mathbb{R}^n} |U(x, y)|^2 d\mu(x, y)$$

where $U(x, y) = (u(x) - u(y))/|x - y|^{s+\epsilon}$, $d\mu = |x - y|^{n-2\epsilon}$.

Mixing property: The extension U(x, y) mixes the smoothness source (order of finite difference in u, qualitative in exponent) and drain (division by |x - y|, quantitative in exponent) conveniently. Higher integrability in the spirit of Gehring gives control over more smoothness.

- Kuusi–Mingione–Sire worked with a slightly more general non-linear operator.
- Higher integrability for fractional equations was done earlier by Bass-Ren (2013).
- The higher differentiability was extended to *p*-fractional setting (related to W^{s,p}(ℝⁿ)) by Schikorra (2016) with a simpler proof.
- The rest of the talk will be about the functional analytic approach (joint work with Pascal Auscher, Simon Bortz and Moritz Egert).

Part III: Functional analytic approach

Recall the form (now with complex valued functions, $\lambda < \operatorname{Re} A(x, y) \le |A(x, y)| \le \lambda^{-1}$)

$$\mathcal{E}_{s}(u,\varphi) := \iint A(x,y) \frac{(u(x)-u(y))\overline{(\varphi(x)-\varphi(y))}}{|x-y|^{n+2s}}$$

- Boundedness: $|\mathcal{E}_s(u,\varphi)| \leq C|u|_{W^{s,2}}|\varphi|_{W^{s,2}}$ by Hölder. Define $\mathcal{L}: W^{s,2} \to (W^{s,2})^*$ via $\langle \mathcal{L}u, \varphi \rangle = \mathcal{E}_s(u,\varphi)$.
- \mathcal{E}_s is quasi-coercive on $W^{s,2}$, that is, $\operatorname{Re} \mathcal{E}_s(u,u) \geq \lambda |u|_{W^{s,p}}$.
- By Lax-Milgram lemma $1 + \mathcal{L} : W^{s,2} \to (W^{s,2})^*$ is invertible, $\max(\|1 + \mathcal{L}\|, \|(1 + \mathcal{L})^{-1}\|) \leq \lambda^{-1} + 1.$

On the other hand

$$\mathcal{E}_{s}(u,\varphi) = \iint A(x,y) \frac{(u(x) - u(y))\overline{(\varphi(x) - \varphi(y))}}{|x - y|^{n+2s}}$$
$$= \iint A(x,y) \frac{(u(x) - u(y))}{|x - y|^{n/p+\alpha}} \frac{\overline{(\varphi(x) - \varphi(y))}}{|x - y|^{n/p'+\beta}}$$

$$\mathcal{L}: W^{lpha, p}
ightarrow (W^{eta, p'})^*$$
 whenever $lpha + eta = 2s$ and $1/p + 1/p' = 1$.

These include the spaces near $W^{s,2}$. We will prove invertibility close enough. All conditions on the right hand side of the equation are just conditions to include it to dual of some space nearby.

Let X, Y be Banach spaces contained in tempered distributions. Let $S = \{z \in \mathbb{C} : \text{Re } z \in (0, 1)\}$. We say $f \in \mathcal{F}(X, Y)$ if

- $f: S \rightarrow X + Y$ is holomorphic on S.
- $t \mapsto f(0+it)$ is continuous $\mathbb{R} \to X$ and $f(it) \to 0$ as $|t| \to \infty$.
- $t \mapsto f(1+it)$ is continuous $\mathbb{R} \to Y$ and $f(1+it) \to 0$ as $|t| \to \infty$.
- Let $||f||_{\mathcal{F}(X,Y)} = \max(\sup_t ||f(it)||_X, \sup_t ||f(1+it)||_Y).$
 - Set $[X, Y]_{[\theta]} = \{f(\theta) : f \in \mathcal{F}(X, Y)\}.$
 - Define the norm $\|u\|_{[X,Y]_{[\theta]}} = \inf\{\|f\|_{\mathcal{F}(X,Y)} : f(\theta) = u\}$
 - $[X, Y]_{\theta}$ is the complex interpolation space of X and Y.

Theorem (Shneiberg (1974))

Let (X_0, X_1) and (Y_0, Y_1) be two interpolation couples and T a bounded linear operator $X_0 \to Y_0$ and $X_1 \to Y_1$. Assume that $\theta_0 \in (0, 1)$ such that T is invertible $X_{\theta_0} \to Y_{\theta_0}$.

Then there is $\delta > 0$ only depending on the data above so that

 $T: X_{\theta} \to Y_{\theta}$ is invertible for all $\theta \in (\theta_0 - \delta, \theta_0 + \delta)$

and the inverses agree on $X_{\theta} \cap X_{\theta_0}$.

Proposition (from a textbook, e.g. Bergh and Löfström 1976)

Let $s_0, s_1 \in (0,1)$ and $1 < p_0, p_1 < \infty$. Set $\theta \in (0,1)$ and

$$s= heta s_0+(1- heta)s_1, \qquad rac{1}{p}=rac{ heta}{p_0}+rac{1- heta}{p_1}$$

then

$$[\mathcal{W}^{s_0,\rho_0},\mathcal{W}^{s_1,\rho_1}]_{\theta}=\mathcal{W}^{s,\rho}.$$

The dual spaces interpolate similarly.

By Shneiberg's theorem there is $\delta > 0$ such that $\mathcal{L} : W^{\alpha,p} \to (W^{\beta,p'})^*$ is invertible whenever $\alpha + \beta = 2s$, 1/p + 1/p' = 1 and $(\alpha, 1/p) \subset B((s, 1/2), \delta)$.

For instance, if $f \in L^r$ with

$$\frac{2s-\alpha}{n}=\frac{1}{r}-\frac{1}{p},\quad (s-\alpha),(p-2)\in(0,\epsilon),$$

for $\epsilon > 0$ small enough and $u \in W^{s,2}$ is a solution to $\mathcal{L}u = f$, then $u \in W^{\alpha,p}$.

- Improvement in differentiability strongly depends on the structure of the form \mathcal{E} . There was a way to choose how much smoothness one requires from the solution and test function.
- The form (u, φ) → ∫ A(x)∇u · ∇φ fixes smoothness because the non-smooth coefficients do not allow to rearrange derivatives.
- The form (u, φ) → ∫ a(x)[(-Δ)^αu][(-Δ)^αφ] with α < 1/2 is from a non-local equation (associated to potential spaces), but it does not allow for redistributing derivatives. Its solutions do not gain smoothness.

Part IV: One more application

Let $A_t(x, y)$ satisfy again $\lambda < \operatorname{Re} A_t(x, y) \le |A_t(x, y)| \le \lambda^{-1}$) for all t > 0 and let $\mathcal{L}_{A_t} : W^{s,2}(\mathbb{R}^n) \to W^{s,2}(\mathbb{R}^n)^*$ be the operator defined through the form

$$\mathcal{E}_{s,\mathcal{A}_t}(u,\varphi) := \iint A_t(x,y) \frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{n+2s}}$$

Consider the equation

$$\partial_t u(t) + \mathcal{L}_{A_t} u(t) = f(t), \quad u(0) = 0$$

posed in $[0, T] \times \mathbb{R}^n$ with data $f \in L^2(\mathbb{R}^{1+n})$.

Weak solutions are found in $H^1(0, T; W^{s,2}(\mathbb{R}^n)^*) \cap L^2(0, T; W^{s,2}(\mathbb{R}^n))$.

Theorem (joint with Auscher, Bortz and Egert (2017))

Let $f \in L^2(0, T; L^2(\mathbb{R}^n))$. Then there is $\epsilon > 0$ and $\sigma > s$ and p > 2 such that the unique weak solution to

$$\partial_t u(t) + \mathcal{L}_{A_t} u(t) = f(t), \quad u(0) = 0$$

satisfies

$$u\in H^1(0,\,T;\,W^{s-\epsilon,2}(\mathbb{R}^n)^*)\cap L^2(0,\,T;\,W^{s+\epsilon,2}(\mathbb{R}^n))$$

and

 $u \in W^{\frac{\sigma}{2s},p}(0,T;L^{p}(\mathbb{R}^{n})) \cap L^{p}(0,T;W^{s,p}(\mathbb{R}^{n})).$