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1. Asymptotic profiles

for fast diffusion



Fast Diffusion equation (FD)

Consider the Cauchy-Dirichlet problem for the Fast Diffusion Equation (FD),

∂t

(
|u|m−2u

)
= ∆u in Ω × (0,∞),(1)

u = 0 on ∂Ω × (0,∞),(2)

u(·, 0) = u0 in Ω,(3)

where m > 2 and Ω is a bounded domain of RN with smooth boundary ∂Ω.

Background: singular diffusion of plasma (m = 3 by Okuda-Dawson ’73).

Throughout (the most of) this talk, we assume that

m < 2∗ :=
2N

(N − 2)+
and u0 ∈ H1

0(Ω).
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Behavior of solutions: finite-time extinction

Extinction in finite time� �
∃t∗ = t∗(u0) ≥ 0 s.t. u(·, t) ≡ 0 in Ω ∀t ≥ t∗.� �

• Singular diffusion Setting w = |u|m−2u, one can rewrite (FD) as

∂tw = ∆
(
|w|m′−2w

)
= ∇ ·

(
(m′ − 1)|w|m′−2︸ ︷︷ ︸

diffusion coefficient

∇w
)
,

where m′ := m/(m− 1) ∈ (1, 2).

• Separable solution Put u(x, t) = ρ(t)ψ(x), where ρ(t) ≥ 0. Then

♠
d

dt
ρ(t)m−1= −λρ(t) for t > 0, ρ(0) = 1,

♣ − ∆ψ(x)= λ|ψ|m−2ψ(x) for x ∈ Ω, ψ|∂Ω = 0.

⇒ ♠ ρ(t) = t
− 1

m−2
∗ (t∗ − t)

1
m−2

+ with t∗ :=
1

λ
·
m− 1

m− 2
.
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Asymptotic profiles of vanishing solutions

Berryman-Holland (’80) proved that

∀u0 ∈ H1
0(Ω) \ {0}, ∃t∗ = t∗(u0) > 0 ; ∥u(t)∥H1

0
≍ (t∗ − t)

1
m−2

+ .

Then there exists an asymptotic profile of the vanishing solution u, i.e.,

(4) ∃ϕ(x) := lim
tn↗t∗

(t∗ − tn)
− 1

m−2u(x, tn) in H1
0(Ω) for ∃tn ↗ t∗,

and moreover, ϕ solves the Emden-Fowler equation (EF),

(5) −∆ϕ = λm|ϕ|m−2ϕ in Ω, ϕ = 0 on ∂Ω

with λm = m−1

m−2
> 0 (cf. see also ♣).

(cf. Y.-C. Kwong (’88), DiBenedetto-Kwong-Vespri (’91), Savaré-Vespri (’94),

Feireisl-Simondon (’00), Bonforte-Grillo-Vazquez (’12)).
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Rescaled Problem (RP)

Apply the transformations (then t ↗ t∗ ⇔ s ↗ ∞),

(7) v(x, s) := (t∗ − t)−1/(m−2)u(x, t) and s := log(t∗/(t∗ − t)).

Then, ϕ = lim
sn→∞

v(sn) with sn := log(t∗/(t∗ − tn)).

Moreover, rewrite (FD) as Rescaled Problem (RP):

∂s

(
|v|m−2v

)
= ∆v+λm|v|m−2v in Ω × (0,∞),(8)

v = 0 on ∂Ω × (0,∞),(9)

v(·, 0) = v0 in Ω,(10)

where v0 = t∗(u0)
−1/(m−2)u0 and λm = m−1

m−2
> 0. Here the function

s 7→ J(v(s)) :=
1

2
∥∇v(s)∥2

L2 −
λm

m
∥v(s)∥m

Lm is non-increasing.

Then, S := {asymptotic profiles for (FD)} = {nontrivial sol. of (EF)}
= {nontrivial stationary sol. of (RP)} = {nontrivial critical points of J(·)}.
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Asymptotic profiles are stable ?

If (EF) has a unique positive solution ϕ, then all nonnegative solutions of

(FD) have the same profile ϕ, i.e., ϕ is “globally stable”

(e.g., Berryman-Holland ’80).

But, what happens if we take account of sign-changing solutions or of the

case that (EF) has multiple positive solutions ?

Q Let ϕ be an asymptotic profile for (FD).

If u0 ∈ H1
0(Ω) is sufficiently close to ϕ, does the asymptotic profile (of the

solution u = u(x, t) of (FD)) for u0 also coincide with ϕ or not ?

“Stability of asymptotic profile” for vanishing solutions of (FD)

[AK13] G. Akagi, R. Kajikiya, Manuscr. Math. 141 (2013), 559–587.

• Notions of stability and instability of asymptotic profiles for FDE.

• Stability criteria for isolated asymptotic profiles.
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2. Stability of asymptotic

profiles



Asymptotic profile in H1
0(Ω)
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Asymptotic profile in H1
0(Ω)
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Stability of the asymptotic profile ϕ1
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Instability of the asymptotic profile ϕ1
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Stability/instability of asymptotic profiles

Let us recall the transformation,

v(x, s) = (t∗ − t)−1/(m−2)u(x, t) and s = log(t∗/(t∗ − t)) ≥ 0.

In particular, note the relation v0 = t∗(u0)
−1/(m−2)u0.

Define the set of initial data for (RP) by

X :=
{
t∗(u0)

−1/(m−2)u0 : u0 ∈ H1
0(Ω) \ {0}

}
=

{
v0 ∈ H1

0(Ω) : t∗(v0) = 1
}

(by t∗(µu0) = µm−2t∗(u0)),

and then, we observe that u0 ∈ H1
0(Ω) \ {0} ⇔ v0 ∈ X .

(i) X is homeomorphic to a sphere in H1
0(Ω). Moreover, S ⊂ X .

(ii) v0 ∈ X ⇒ v(s) ∈ X ∀s ≥ 0.
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Phase set X and the projection of u0 onto X
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Stability of the asymptotic profile ϕ1
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Instability of the asymptotic profile ϕ1
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Definition of the stability/instability of profiles

Definition 1 (Stability of asymptotic profiles [AK13])� �
Let ϕ ∈ H1

0(Ω) be an asymptotic profile of vanishing solutions for (FD).

(i) ϕ is said to be stable, if for any ε > 0 there exists δ = δ(ε) > 0

such that any solution v of (RP) satisfies

v(0) ∈ X ∩BH1
0
(ϕ; δ) ⇒ sup

s∈[0,∞)

∥v(s) − ϕ∥H1
0
< ε.

(ii) ϕ is said to be unstable, if ϕ is not stable.

(iii) ϕ is said to be asymptotically stable, if ϕ is stable, and moreover,

there exists δ0 > 0 such that any solution v of (RP) satisfies

v(0) ∈ X ∩BH1
0
(ϕ; δ0) ⇒ lim

s↗∞
∥v(s) − ϕ∥H1

0
= 0.

� �
= Stability in Lyapunov’s sense of stationary points for (RP) on X .
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Stability of asymptotic profiles

Def. Let d1 be the least energy of J over nontrivial solutions, i.e.,

d1 := inf
v∈S

J(v), S = { nontrivial solutions of (EF)}.

A least energy solution ϕ of (EF) means ϕ ∈ S satisfying J(ϕ) = d1.

Remark. Every least energy solution of (EF) is sign-definite.

Theorem 2 (Stability of profiles [AK13])� �
Let ϕ be a least energy solution of (EF). Then

(i) ϕ is a stable profile, if ϕ is isolated in H1
0(Ω) from the other least

energy solutions.

(ii) ϕ is an asymptotically stable profile, if ϕ is isolated in H1
0(Ω) from

the other sign-definite solutions.� �
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Instability of asymptotic profiles

Theorem 3 (Instability of profiles [AK13])� �
Let ψ be a sign-changing solution of (EF). Then

(i) ψ is NOT an asymptotically stable profile.

(ii) ψ is an unstable profile, if ψ is isolated in H1
0(Ω) from the set

{w ∈ S : J(w) < J(ψ)}.� �
Roughly speaking,

• least energy solutions of (EF) are asymptotically stable profiles;

• sign-changing solutions of (EF) are unstable profiles

under appropriate assumptions on the isolation of profiles.
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Variational view of the stability criteria
(RP) can be expressed as a (generalized) gradient flow,

∂s

(
|v|m−2v

)
(s) = −J ′(v(s)) in H−1(Ω), s > 0.

Moreover, the energy functional J(·) has a mountain pass structure.

J(w) =
1

2
∥∇w∥2

L2 −
λm

m
∥w∥m

Lm, w ∈ H1
0(Ω), m > 2.

(cf. Nehari manifold N = {w ∈ H1
0(Ω) \ {0} : ⟨J ′(w), w⟩ = 0})
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Variational view of the stability criteria

Key properties of the set X = {v0 ∈ H1
0(Ω) : t∗(v0) = 1}

(i) v0 ∈ X ⇒ ∀sn → ∞, ∃(n′) ⊂ (n), ∃ϕ ∈ S, v(sn′) → ϕ.

(ii) X is (sequentially) weakly closed in H1
0(Ω).

(iii) X is a separatrix between stable and unstable sets for (RP) in H1
0(Ω).

(cf. Nehari manifold N = {w ∈ H1
0(Ω) \ {0} : ⟨J ′(w), w⟩ = 0})
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Characterization of X

Global dynamics of solutions to (RP) can be completely clarified, i.e.,

H1
0(Ω) = X+ ∪ X ∪ X−

Proposition 4 (Characterization of X )� �
Let v(s) be a solution of (RP) with v(0) = v0.

(i) If v0 ∈ X = {v0 ∈ H1
0(Ω) : t∗(v0) = 1},then

v(sn) → ϕ ∈ S strongly in H1
0(Ω) as sn → ∞.

(ii) If v0 ∈ X+ := {v0 ∈ H1
0(Ω) : t∗(v0) > 1}, then v(s) diverges

as s → ∞. Hence X+ is an unstable set.

(iii) If v0 ∈ X− := {v0 ∈ H1
0(Ω) : t∗(v0) < 1}, then v(s) vanishes

in finite time. Hence X− is a stable set.� �
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3. Stability of non-isolated

asymptotic profiles



Beyond the criteria: annulus case

Let us consider the annular domain,

Ω = AN(a, b) := {x ∈ RN : a < |x| < b}, 0 < a < b.

If (b− a)/a ≪ 1, then least energy solutions of (EF) are not radially

symmetric (see [Coffman ’84] and also [Y.Y. Li ’90], [Byeon ’97]).

Then least energy solutions of (EF) form a one-parameter family in H1
0(Ω).

So this case is out of the criteria given by Theorem 2.
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Non-isolated profiles of least energy

The solitary assumption of asymptotic profiles is essentially needed to verify

their asymptotic stability. But, how about the stability ?

Namely, we shall discuss the following question:

Q Are non-isolated asymptotic profiles of least energy always stable or not ?
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Stability of all least energy profiles

Our result reads,

Theorem 5 (Stability of non-isolated profiles [A16])� �
Let ϕ > 0 be any least energy solution of (EF).

Then ϕ is stable in the sense of Definition 1 (for possibly sign-changing

data).� �

[A16] G. Akagi, Comm. Math. Phys. 345 (2016), 077-100.
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Idea of proof

Goal� �
v0 ∼ ϕ on X ⇒ ∀s ≥ 0, v(s) ∼ ϕ on X� �

Key claim:

v0 ∼ ϕ on X ⇒ sup
s≥0

∥v(s) − v0∥H−1(Ω) ≪ 1.

Remark: It is not true, if we do not restrict the phase space onto X .

Indeed, ϕ is a saddle point of J(·) over H1
0(Ω).

⇒ The set X plays a crucial role !!

In particular, in the current setting, one may expect the existence of a “center

manifold” on X , since ϕ belongs to a one-parameter family of stationary

points.
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 Lojasiewicz-Simon inequality for J(·)

Let ϕ ≥ 0 be a least energy solution of (EF). Then by maximum principle,

0 < ϕ(x) ≤ ∃Lϕ in Ω, ∂νϕ(x) < 0 on ∂Ω.

To prove the main result, we shall employ (see [Feireisl-Simondon’00]):

Proposition 6 ( Lojasiewicz-Simon inequality for J(·))� �
∀L > Lϕ, ∃θ ∈ (0, 1/2], ∃ω > 0, ∃δ > 0 s.t.

( LS) |J(w) − J(ϕ)|1−θ ≤ ω ∥J ′(w)∥H−1(Ω) ,

for all w ∈ H1
0(Ω), |w(·)| ≤ L a.e. in Ω, ∥w − ϕ∥H1

0(Ω) < δ.� �
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 LS for Lyapunov stability

Test (RP): ∂s(|v|m−2v) = −J ′(v) by ∂sv(s) to see that(
∂s(|v|m−2v), ∂sv

)
= −

d

ds
J(v(s)).

Suppose that v(s) is uniformly bounded for s ≥ 0. Then

C2

∥∥∂s

(
|v|m−2v

)
(s)

∥∥2

H−1(Ω)
≤ −

d

ds
J(v(s))

for some C2 > 0 (depending on L := sups≥0 ∥v(s)∥L∞). Note by the

 L-S inequality that∥∥∂s

(
|v|m−2v

)
(s)

∥∥
H−1(Ω)

(RP)
= ∥J ′(v(s))∥H−1(Ω)

( LS)

≥ ω−1
(
J(v(s)) − J(ϕ)

)1−θ

.
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 LS for Lyapunov stability

We obtain

C2ω
−1

(
J(v(s)) − J(ϕ)

)1−θ ∥∥∂s

(
|v|m−2v

)
(s)

∥∥
H−1(Ω)

≤ −
d

ds

(
J(v(s)) − J(ϕ)

)
In case J(v(s)) − J(ϕ) > 0, it follows that∥∥∂s

(
|v|m−2v

)
(s)

∥∥
H−1(Ω)

≤ −C3

d

ds

(
J(v(s)) − J(ϕ)

)θ

︸ ︷︷ ︸
=: H(s)

.

Integrate both sides over (0, s).
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 LS for Lyapunov stability

Then∫ s

0

∥∥∂s

(
|v|m−2v

)
(s)

∥∥
H−1(Ω)

ds ≤ −C3

∫ s

0

d

ds
H(s) ds

= −C3H(s) + C3H(0)

≤ C3H(0)

= C3

(
J(v(0)) − J(ϕ)

)θ

,

which implies∥∥|v|m−2v(s) − |v|m−2v(0)
∥∥
H−1(Ω)

≤ C3

(
J(v(0)) − J(ϕ)

)θ

≪ 1 if v(0) ∼ ϕ on X .

⇒ desired conclusion (by fundamental inequalities).
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A uniform extinction estimate for (FD)

Lemma 7 (Uniform estimate for rescaled solutions)� �
∃C = C(N,m) > 0; ∀s0 ∈ (0, log 2), ∀v0 ∈ X ,

∥v(s)∥L∞(Ω) ≤ C (es0 − 1)−
N
κ R(v0)

4m
κ(m−2) for all s ≥ s0.

with κ := 2N −Nm+ 2m > 0 (by m < 2∗).� �
(cf. [DiBenedetto-Kwong-Vespri ’91] for v0 ≥ 0)

• For 0 < s0 ≪ 1, one can prove that

sup
s∈[0,s0]

∥v(s) − v0∥H1
0(Ω) ≪ 1.

• By Lemma 7, one can apply the  LS argument for v(s) on [s0,∞):

v(s0) ∼ ϕ on X ⇒ sup
s≥s0

∥v(s) − v0∥H1
0(Ω) ≪ 1.
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4. Instability of positive radial

profiles in annular domains



Positive radial profiles in annular domains

Let us recall the annular domain,

Ω = AN(a, b) := {x ∈ RN : a < |x| < b}, 0 < a < b.

Then (EF) admits a unique positive radial solution ϕ > 0 (cf. [Ni ’83]).

If (b− a)/a ≪ 1, then least energy solutions of (EF) are not radially

symmetric.

Thereby, the positive radial profile ϕ may NOT take the least energy and it is

NOT sign-changing. Hence ϕ is also beyond the scope of the stability criteria

of [AK13].
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Instability of positive radial profiles for N = 2

[AK14] G. Akagi, R. Kajikiya, AIHP (C) 31 (2014), no.6 1155–1173.

Theorem 8 (Instability of positive radial profiles [AK14])� �
Let Ω = AN(a, b) and assume that

(11)

(
b

a

)(N−3)+
(
b− a

πa

)2

<
m− 2

N − 1
.

Let ϕ be the unique positive radial solution of (EF).

Then ϕ is NOT asymptotically stable in the sense of profile.

In addition, if (b− a)/a ≪ 1 and N = 2, then ϕ is unstable.� �
Q Can we prove the instability for general N under the quantitative

condition (11) ?
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Instability of positive radial profiles for general N

Our result reads,

Theorem 9 (Instability of positive radial profiles [A16])� �
Let Ω = AN(a, b) and assume that

(11)

(
b

a

)(N−3)+
(
b− a

πa

)2

<
m− 2

N − 1
.

Then the positive radial profile ϕ is unstable.� �
Non-radial perturbation to ϕ (N = 2 for simplicity):

ϕε(x) = (1 + ε cos θ)ϕ(r) for x = x(r, θ).

Then ϕε ̸∈ X . However, v0,ε := t∗(ϕε)
−1/(m−2)ϕε ∈ X .
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Proof

Under (11), one can (explicitly) construct v0,ε ∈ X such that

v0,ε → ϕ in H1
0(Ω) as ε → 0+ and J(v0,ε) < J(ϕ) if ε > 0.

Therefore there exist ψε ∈ S such that the solution vε of (RP) with

vε(0) = v0,ε satisfies

vε(s) → ψε in H1
0(Ω), J(ψε) ≤ J(v0,ε) < J(ϕ).

Claim. ψε does not converge to ϕ as ε → 0+.

Suppose on the contrary that ψε → ϕ. Then, due to the  LS inequality (6),

J(ψε) = J(ϕ) for ε ≪ 1,

which is a contradiction to the difference of the energy.

Consequently, the solution vεn of (RP) with vεn(0) = v0,εn cannot stay

within a small neighborhood of ϕ.
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Instability of other profiles
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Remarks

The main results can be extended to local minimizers of J over X ,

i.e., ϕ ∈ H1
0(Ω) \ {0} satisfying

J(ϕ) = inf{J(w) : w ∈ X ∩BH1
0(Ω)(ϕ; r0)} for some r0 > 0.

(1) Theorem 5 is extended as follows:

Theorem 10 (Stability of local minimizers of J over X )� �
Let ϕ be a local minimizer of J over X . Then ϕ is stable in the sense

of Definition 1.� �
(2) Theorem 9 is extended to

Theorem 11 (Instability of sign-definite profiles)� �
Let ϕ be a positive or negative profile except for local minimizers of

J over X . Then ϕ is unstable.� �
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5. Exponential stability of

asymptotic profiles



Hierarchy of stability

'

&

$

%

Notion of stability ⇐ Criteria

Exponential stability

⇓ ∩
Asymptotic stability isolated profiles of LE

⇓ ∩
Stability any profiles of LE

LE = least energy

Q Can we prove exponential stability for some class of isolated asymptotic

profiles of least energy ?
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Exponential stability of non-degenerate LESs

Theorem 12 (Exponential stability of non-degenerate LESs)� �
Let ϕ > 0 be a non-degenerate least energy solution of (EF), namely,

Lϕ := −∆ + λm(m− 1)|ϕ|m−2 is invertible.

Then ϕ is exponentially stable, i.e., ϕ is stable, and moreover,

• there exist C, µ, δ0 > 0 s.t. any solution v(x, s) of (RP) satisfies

∥v(s) − ϕ∥H1
0(Ω) ≤ Ce−µs for all s ≥ 0,

provided that v(0) ∈ X and ∥v(0) − ϕ∥H1
0(Ω) < δ0.

In particular, µ = µ(Ω, N,m, ∥L−1
ϕ ∥).� �

cf.) Exponential convergence of any nonnegative solution for (FD) with

m < m♯ for some m♯ ∈ (2,∞) (Bonforte-Grillo-Vazquez ’12).
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Outline of proof

Since J ′′(ϕ) = Lϕ is non-degenerate, one can prove the following gradient

inequality:

Proposition 13 (Gradient inequality)� �
For any ω > ∥L−1

ϕ ∥L(H−1(Ω);H1
0(Ω)), there exists δ > 0 such that

(12) |J(w) − J(ϕ)|1/2 ≤ ω∥J ′(w)∥H−1(Ω)

for all w ∈ H1
0(Ω) satisfying ∥w − ϕ∥H1

0(Ω) < δ.� �
Remark: In  LS inequalities, it could be difficult to identify the exponent θ

(indeed, θ might be less than 1/2). On the other hand, θ = 1/2 will play a

crucial role to prove the exponential stability.
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Outline of proof

Test (RP): ∂s(|v|m−2v) = −J ′(v) by ∂sv(s) to see that(
∂s(|v|m−2v), ∂sv

)
︸ ︷︷ ︸

(m−1)
∫
Ω |v|m−2|∂sv|2 dx= 4

mm′
∫
Ω |∂sv

m
2 |2 dx

= −
d

ds
J(v(s)).

Since ϕ is stable (i.e., ∥v(s)∥H1
0(Ω) ≈ ∥ϕ∥H1

0(Ω)), one can derive

C
∥∥∂s

(
|v|m−2v

)
(s)

∥∥2

H−1(Ω)
≤ −

d

ds
J(v(s))

for some C > 0 depending on ϕ.

Here, by gradient inequality, we find that∥∥∂s

(
|v|m−2v

)
(s)

∥∥
H−1(Ω)

(RP)
= ∥J ′(v(s))∥H−1(Ω)

(GI)

≥ ω−1
(
J(v(s)) − J(ϕ)

)1/2

.
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Outline of proof

We obtain

Cω−2
(
J(v(s)) − J(ϕ)

)
≤ −

d

ds

(
J(v(s)) − J(ϕ)

)
It follows that

0 ≤ J(v(s)) − J(ϕ) ≤ (J(v(0)) − J(ϕ)) e−µs.

On the other hand, as in the proof of stability, one can derive

∥∂s(|v|m−2v)(s)∥H−1(Ω) ≤ −
C

θ

d

ds

(
J(v(s)) − J(ϕ)

)1
2
.

Integrate this over (s,∞). Then∫ ∞

s

∥∂σ(|v|m−2v)(σ)∥H−1(Ω) dσ ≤
C

θ

(
J(v(s)) − J(ϕ)

)1
2
.
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Outline of proof

Hence∥∥ϕm−1 − |v|m−2v(s)
∥∥
H−1(Ω)

≤
∫ ∞

s

∥∂σ(|v|m−2v)(σ)∥H−1(Ω) dσ

≤
C

θ

(
J(v(s)) − J(ϕ)

)1
2 ≤ Ce−

µ

2
s.

Furthermore, we can also derive

• ∥ϕ− v(s)∥m
Lm ≤ ⟨ϕm−1 − |v|m−2v(s), ϕ− v(s)⟩H1

0
≤ Ce−

µ

2
s,

•
1

2

(
∥∇v(s)∥2

L2 − ∥∇ϕ∥2
L2

)
≤ (diff. of J and ∥ · ∥m

Lm) ≤ Ce−
µ

2m
s,

and then, we finally obtain

∥v(s) − ϕ∥2
H1

0
= ∥∇v(s)∥2

H1
0
− ∥∇ϕ∥2

H1
0
− 2 (∇ϕ,∇(v(s) − ϕ))L2

≤ Ce−
µ

2m
s.
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Examples of non-degenerate least energy solutions

• (Dancer (’88)). Let 2 < m < 2∗ and Ω be a bounded convex domain

in R2, which is symmetric w.r.t. the coordinate axes. Then positive

solution is unique and nondegenerate (see also [Pacella ’05]).

• (Lin (’94)). Let 2 < m < 2∗ and Ω be a bounded convex domain in

R2. Then least energy solution is unique and nondegenerate.

• (Grossi (’00)). Let N ≥ 3 and 2∗ − δ < m < 2∗ with a small δ > 0.

Let Ω ⊂ RN be convex in xi and symmetric w.r.t. [xi = 0] for each

1 ≤ i ≤ N . Then positive solution is unique and nondegenerate.

• (Dancer (’03)). Let 2 < m < 2 + δ with a small δ > 0 and Ω be any

bounded smooth domain in RN . Then positive solution is unique and

nondegenerate.
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6. Sobolev-critical case
Work in progress

joint work with N. Ikoma (Keio Univ., Japan)



FDEs with the Sobolev critical exponent

Let us consider the Sobolev-critical case (i.e., the case m = 2∗),

∂t

(
|u|2∗−2u

)
= ∆u+µu in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

u(·, 0) = u0 in Ω,

where Ω is a b’dd domain of RN , N ≥ 3, µ < λ1(Ω) and 2∗ = 2N
(N−2)+

(here λ1(Ω) is the principal eigenvalue of −∆). Then one can prove that

• for each u0 ∈ H1
0(Ω) \ {0} there exists t∗(u0) > 0 such that

c(t∗ − t)
1/(2∗−2)
+ ≤ ∥u(t)∥H1

0(Ω) ≤ C(t∗ − t)
1/(2∗−2)
+

for some 0 < c < C < +∞.
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FDEs with the Sobolev critical exponent

Set v(x, s) := (t∗ − t)
−1/(2∗−2)
+ u(x, t) with s = log(t∗/(t∗ − t)).

Then v(x, s) solves (RP), that is,

∂s

(
|v|2∗−2v

)
= ∆v+µv + λ∗|v|2

∗−2v in Ω × (0,∞),

v = 0 on ∂Ω × (0,∞),

v(·, 0) = v0 in Ω,

where λ∗ = 2∗−1

2∗−2
> 0 and v0 = t∗(u0)

−1/(2∗−1)u0. Moreover,

• it holds that c ≤ ∥v(s)∥H1
0(Ω) ≤ C for all s ≥ 0,

• Jµ(v(s)) := 1
2
∥∇v(s)∥2

L2 +
µ

2
∥v(s)∥2

L2 − λ∗
2∗ ∥v(s)∥2∗

L2∗ is

non-increasing in s,

• however, the embedding H1
0(Ω) ↪→ L2∗

(Ω) is no longer compact.
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Sobolev-critical case (contd.)

Even if m = 2∗, the following facts are still valid:

• (v(sn)) is a (PS)-sequence for J(·) along some sequence sn → ∞,

• Jµ(w) ≥ d1 for all w ∈ X (proof requires more effort),

• an asymptotic profile ϕ(x) of u(x, t) can be defined as a limit of

v(x, sn) (in H1
0(Ω)) along a seq. sn → +∞ and characterized by

(BN) −∆ϕ− µϕ = λ∗|ϕ|2
∗−2ϕ in Ω, ϕ|∂Ω = 0.

• notions of stability of asymptotic profiles can be also defined in the same

manner for (regular) profiles,

On the other hand, it is unclear

does each solution v(x, s) have a (regular) asymptotic profile ?

due to the lack of compactness embedding H1
0(Ω) ↪→ L2∗

(Ω).
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Sobolev-critical case without lower order term

As for the case µ = 0, i.e.,

∂t

(
|u|2∗−2u

)
= ∆u in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

u(·, 0) = u0 in Ω,

Galaktionov and King (’02) If u0 is positive and radial, then

∥u(t)∥L∞ = C(t∗ − t)
1

2∗−2

+ | log(t∗ − t)|
N+2

2N−4 (1 + o(1))

as t ↗ t∗. It also yields

∥v(s)∥L∞ = C|s− log t∗|
N+2

2N−4 (1 + o(1)) as s ↗ ∞.
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Sobolev-critical case without lower order term

If m = 2∗ and Ω = RN , (FD) and J(·) are invariant under the scaling,

v(x, s) 7→ vµ(ξ, s) = µ
N−2

2 v(µξ, s).

In particular, we remark that

• d1 is never attained by non-trivial solutions to (EF). Furthermore, it is

characterized with a Talenti function W (x) by

d1 := inf
w∈S

J(w) =
1

2

∫
RN

|∇W (x)|2dx−
λm

m

∫
RN

|W (x)|mdx.
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Global compactness result

By applying Struwe’s global compactness result (Struwe ’84, Bahri-Coron ’88),

Proposition 14 (Global compactness)� �
There exist k ∈ N∪ {0}, sequences (Rj

n) in (0,+∞) and (xj
n) in Ω,

a solution ϕ ∈ H1
0(Ω) of (EF) and nontrivial solutions ψj ∈ D1,2(RN)

(j = 1, 2, . . . , k) to the limiting problem

−∆ψj = λ∗|ψj|m−2ψj in RN

such that, up to a subsequence,

Rj
n → ∞ and

∥∥∥∥∥v(sn) − ϕ−
k∑

j=1

ψj
n

∥∥∥∥∥
D1,2(RN )

→ 0

as n → ∞. Here ψj
n(x) = (Rj

n)
(N−2)/2ψj(Rj

n(x− xj
n)).� �
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Global compactness result

Proposition 15 (Global compactness)� �
Moreover, we have

J(v(sn)) → J(ϕ) +
k∑

j=0

JRN (ψj)

with

JRN (w) :=
1

2

∫
RN

|∇w(x)|2dx−
λm

m

∫
RN

|w(x)|mdx.

Furthermore, if i ̸= j, then

Ri
m

Rj
m

+
Rj

m

Ri
m

+Ri
mR

j
m|xi

m − xj
m|2 → +∞ as m → +∞.

� �
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Star-shaped domain case

Let us consider the case that Ω is strictly star-shaped w.r.t. 0 and u0 ≥ 0

(hence v0 ≥ 0 and v(·, sn) > 0). Then ϕ ≥ 0 and ψj > 0.

On the other hand, by a well-known nonexistence result, (EF) admits no

positive solution. Hence ϕ ≡ 0.

Furthermore, we claim that k ̸= 0. Indeed, if k = 0, then

v(sn) → 0 strongly in H1
0(Ω) and J(v(sn)) → 0.

However, since J(v(sn)) ≥ d1 > 0 by v(sn) ∈ X , it yields a

contradiction.
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Star-shaped domain case (contd.)

Moreover, one can observe that ψj = W , a Talenti function, and

J(v(sn)) → kβ with β := JRN (W ).

Remark. k is uniquely determined, for J(v(·)) is nonincreasing.

Observation� �
Let Ω be strictly star-shaped and assume that u0 ≥ 0 and kβ <

J(u0) ≤ (k + 1)β. Then v(·) forms at least one and at most k

bubbles along a sequence sn → +∞, i.e.,

v(x, sn) ∼
k∑

j=1

ψj
n(x) for n ≫ 1,

where ψj
n(x) = (Rj

n)
(N−2)/2W (Rj

n(x−xj
n)), for some sn → +∞.� �
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Brezis-Nirenberg result

Proposition 16 (Brezis-Nirenberg ’83)� �
• In case n ≥ 4, for any µ ∈ (0, λ1(Ω)),

• In case n = 3, there exists µ∗ ∈ [0, λ1(Ω)) such that for any

µ ∈ (µ∗, λ1(Ω)),

the Dirichlet problem

(BN) −∆ϕ− µϕ = λ∗|ϕ|2
∗−2ϕ in Ω, ϕ|∂Ω = 0

admits a positive solution ϕ > 0.� �
Remark In case n = 3 and Ω = B(0; 1) ⊂ R3,

• µ ≤ µ∗ = λ1(Ω)/4,

• (BN) has no positive solution for any µ ≤ µ∗ = λ1(Ω)/4.
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Local compactness

Lemma 17 (Local compactness [BN ’83, Struwe ’90])� �
Any sequence (un) in H1

0(Ω) satisfying

Jµ(un) → ∃β <
1

N
S

N/2
0 , J ′

µ(un) → 0 strongly in H−1(Ω)

is precompact in H1
0(Ω). Here S0 denotes the infimum of the Rayleigh

quotient,

S0 := inf
w∈H1

0(Ω)\{0}

∥∇w∥2
L2(Ω)

∥w∥2/2∗

L2∗(Ω)

.

� �
Remark Under the assumptions of the BN result, one can check the above

for the mountain-pass level, that is, d1,µ = inf
w∈S

Jµ <
1

N
S

N/2
0 .
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Results

Theorem 18 (Convergence to least energy profiles)� �
In addition to the assumptions of the Brezis-Nirenberg result, suppose that

v0 ∈ X , J(v0) <
1

N
S

N/2
0 .

For any sn → +∞, there exist a subsequence (n′) of (n) and a non-

trivial solution ϕ of (BN) such that

v(sn′) → ϕ strongly in H1
0(Ω).

Moreover, if either ϕ > 0 or N = 3, 4, then

v(s) → ϕ strongly in H1
0(Ω) as s → +∞.� �
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Results

Theorem 19 (Stability of least energy profiles)� �
Asymptotic profiles of least energy are stable.� �
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Key of proofs

• Lack of compactness → Local compactness result

• Lack of uniform boundedness for v(x, s) → refine arguments to exclude

the use of uniform boundedness

–  LS inequality for power nonlinearities (with a singularity at the origin)

[Feireisl-Simondon ’00]:  L ineq. is applied to a cut-offed function.

Remove unif. b’ddness of solutions [A-Schimperna-Segatti, preprint]

– Energy arguments to handle ∂t(|v|2
∗−2v)

Improvable for the critical case
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Remark

• “Compactness” is needed to realize a “regular” asymptotic profile.

– FDE with a lower order term (cf. Brezis-Nirenberg type)

– “Symmetric” domains with a hole

• “Non-compactness” causes a “singular” asymptotic profile

(e.g., m = 2∗ and µ = 0).

– Behavior of such singular solutions along a full sequence

– How to extend the notion of asymptotic profiles to singular ones ?

– How to define stability and instability of singular profiles ?

– How is the stability and instability of each singular profile ?

51/51



Thank you for your attention !

Goro Akagi
Tohoku University, JP
goro.akagi@tohoku.ac.jp


