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Chapter 1

Introduction to pattern recognition

1.1 The problem

Pattern recognition or classification or discrimination is the assignment of a la-
bel or class to a given input.

Examples of classification are (among many others):

• In banking, calculating the credit risk given the information about the customer.
The classes are: "high risk" and "low risk".

• Determining whether a given e-mail is spam or not. The classes are: "spam" and
"not spam".

• Crediting students in a test. The classes are: "A", "B", "C", "D", "E", "F".

• Character recognition (handwritten or, for example, from licence plate). The classes
are "A", "B", "C",..., "Y".

• The digit recognition. The classes are "0", "1",..., "9".

• Medical diagnosis. The input is medical information and the classes are the illnesses.

• Face recognition. The input is an image and the classes people to be recognized.

In all these examples the characteristic features are: the set of classes (labels) is given,
finite and "relatively small" (often there are only two classes). Thus, we can identify every
class with a number from a set Y = {0, . . . , k− 1} (altogether k classes). How the classes
are coded, does obviously not matter. Often, the two classes are coded as {−1, 1}.
The classifier (machine, human being, computer program) assigns a class to every object
given the information about the classified object (input). Without loss of generality, we
can assume that the information or input is given as a d-dimensional feature or pat-
tern or observation vector x ∈ Rd. Indeed, every information can be presented as such a
vector where the dimension d possibly very large. An important part of the classification
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or recognition procedure is knowledge or feature extraction that consists of finding
these features or variables that explain the data and are most useful in classification.
These features are then presented in the feature vector x.

Formally, a classifier is a function

g : Rd 7→ Y . (1.1.1)

Note that (1.1.1) can be written as

g =
k−1∑
i=0

iICi
(x), (1.1.2)

where IC is the indicator of the set C, i.e.

IC(x) :=

{
1, if x ∈ C;
0, if x 6∈ C.

Hence g defines a partition {C0, . . . , Ck−1} of the set Rd, where class i will be assigned to
an object if and only if the feature vector belongs to the set Ci.

1.2 Bayesian decision theory
How to measure the goodness of g? Since the input vectors x are not known for sure, they
are considered as random. Every random vector has a distribution or law that is uniquely
characterized by its distribution function. In the following, let F be the distribution
function of feature vector. Recall that for every function h : Rd → R, the expected value
of h(x) over all features is the Lebesgue integral

∫
h(x)dF (x).

Example. Suppose we aim to determine the sex of a human being based on his or her
length and weight, both given as the elements of N. Hence, d = 2 and x = (x1, x2), where
x1, x2 ∈ N. Let N(x1, x2) be the number of individuals in the population with length
and weight (x1, x2). Assuming that every individual is chosen with equal probability, we
obtain the probability that an individual with feature vector x = (x1, x2) is chosen is

p(x) = p(x1, x2) =
N(x1, x2)

N
,

where N is the size of population. The distribution of the feature vector is given by the
vectors and their probabilities:

{(x1, x2), p(x1, x2) : x1, x2 ∈ N}.
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The distribution function F : R2 7→ [0, 1] is then

F (x) = F (x1, x2) =
∑

x′1≤x1,x′2≤x2

p(x′1, x
′
2).

Although every object belongs to one class, in practice a feature vector x can belong to
the objects from different classes. Hence, the class of the object with features x can be
considered random as well. Let p(j|x) be the probability that an object with features x
belongs to class j = 0, . . . k − 1. Let F (y|x) be the corresponding distribution function:

F (y|x) :=
∑
i≤y

p(i|x).

Recall the (conditional) expectation of a function h over the measure F (y|x) is the sum
∫

h(y)dF (y|x) =
∑

i

h(i)p(i|x). (1.2.1)

Example. Let us continue with the example. Suppose that 2
3
of the people with length

175 and weight 67 are men. Then p(0|(175, 65)) = 2
3
and p(1|(175, 65)) = 1

3
, where 1 is

female and 0 male.

The feature x is a random vector with distribution function F . Given the feature vector
x, also the class of the object is random with conditional distribution function F (y|x).
Thus the pair – feature vector and the corresponding class – is d + 1-dimensional random
vector, let F (x, y) be its distribution function. Given a function

h : Rd × Y 7→ R,
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the expected value of h(x, y) over the vectors (x, y) is the following integral
∫

Rd×Y
h(x, y)dF (x, y) =

∫

Rd

∫

Y
h(x, y)dF (y|x)dF (x) =

∫

Rd

k−1∑
i=0

h(x, i)p(i|x)dF (x).

(1.2.2)

Example. Let us continue with the example. The probability p(0|(x1, x2)) is the propor-
tion of men amongst the people with length x1 and weight x2; p(x1, x2) is the proportion
of such people in population and p(0|(x1, x2))p(x1, x2) =: p(x1, x2, 0) is the proportion of
men with features x1 and x2 in the population. In other words, p(x1, x2, 0) is the proba-
bility that the three-dimensional random vector – length, weight and sex – takes the value
(x1, x2, 0). The distribution function of that three-dimensional random vector is

F : R3 7→ [0, 1], F (y, x1, x2) =
∑
i≤y

∑

x′1≤x1

∑

x′2≤x2

p(x′1, x
′
2, i).

Let π0 and π1 be the probability that randomly chosen individual is man and woman,
respectively. Clearly

π0 =
∑
x1,x2

p(x1, x2, 0), π1 =
∑
x1,x2

p(x1, x2, 1).

Exercise: Suppose that one-dimensional random variable (feature) takes five possible val-
ues: 1,2,3,4,5 with equal probability. Let k = 2, and p(1|x = i) = i

5
, i = 1, . . . , 5. Find

the joint distribution of class and feature. Find F (y, x), π0 and π1.

Note that (1.1.1) is non-random. i.e. g classifies every feature x uniquely. Since, in
general, that is not so, we have that misclassification is inevitable!

1.2.1 Loss and risk

In reality, the misclassification causes loss that often quantify.

Definition 1.2.1 The loss function

L : Y × Y → R+

assigns to every pair (i, j) loss that occur when the object belonging to class i is classified
as belonging to class j.

It is natural to take L(i, i) = 0 – classifying correctly causes no loss.

The loss-function depends on the concrete task and it should be taken into account in
measuring the goodness of g. Clearly good classifier g is such that the loss L(y, g(x)) is
small. However, since (x, y) is random, so is the loss L(y, g(x)). Therefore, it is natural
measure the goodness of g using the expected loss, where expectation is taken over pairs
(x, y). The expected loss of g measures the average loss when g is applied repeatedly.
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Definition 1.2.2 The risk of classifier g is the average loss over the joint distribution
F (x, y):

R(g) :=

∫
L(y, g(x))dF (x, y). (1.2.3)

From (1.2.2), we get

R(g) =

∫

Rd

∫

Y
L(y, g(x))dF (y|x)dF (x) =

∫

Rd

k−1∑
j=0

L(j, g(x))p(j|x)dF (x). (1.2.4)

1.2.2 Bayes classifier and Bayes risk

Let us find the best possible classifier, i.e. classifier that minimizes (1.2.3) over all possible
classifiers. Let x be a feature vector and g a classifier. The conditional risk of g given
x is the average loss when classifying object with features x:

R(g(x)|x) :=

∫

Y
L(y, g(x))dF (y|x) =

k−1∑
j=0

L(j, g(x))p(j|x).

In other words, the conditional risk R(i|x) is average risk when classifying an object with
features x to the class i (i.e. when g(x) = i). Averaging the conditional risk over all
features, we obtain the risk R(g) (recall (1.2.4))

∫

Rd

R(g(x)|x)dF (x) =

∫

Rd

∫

Y
L(y, g(x))dF (y|x)dF (x) = R(g).

From the equality above, it follows that to minimize R(g) it suffices to minimize R(g(x)|x)
for every x. Indeed, let the classifier g∗(x) be defined as follows:

g∗(x) = arg min
g(x)

R(g(x)|x) = arg min
i∈Y

R(i|x) = arg min
i∈Y

k−1∑
j=0

L(j, i)p(j|x). (1.2.5)

From the definition above, it follows that

R(g∗(x)|x) = min
i∈Y

R(i|x)

so that for any other classifier g it holds R(g∗(x)|x) ≤ R(g(x)|x). By the monotonicity of
integration

R(g∗) =

∫
R(g∗(x)|x)dF (x) ≤

∫
R(g(x)|x)dF (x) = R(g). (1.2.6)

Hence, R(g∗) has the smallest possible risk over all possible classifiers:

R(g∗) = inf
g

R(g).
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Definition 1.2.3 The classifier g∗, where g∗(x) is defined as in (1.2.5) is Bayes classifier
and its risk

R∗ := R(g∗) =

∫
L(y, g∗(x))dF (y, x)

is called Bayes risk .

From the equation R(g∗(x)|x) = mini∈Y R(i|x), we get

R∗ =

∫
min
i∈Y

R(i|x)dF (x) =

∫
min
i∈Y

k−1∑
j=0

L(j, i)p(j|x)dF (x).

To recapitulate: Bayes classifier is the best possible classifier and Bayes risk is the smallest
possible risk.

When L(i, i) = 0 and k = 2, then for any x, the conditional risk is

R(g(x)|x) =

{
L(1, 0)p(1|x) when g(x) = 0,

L(0, 1)p(0|x) when g(x) = 1.

Bayes classifier is then

g∗(x) =

{
0 when L(1, 0)p(1|x) ≤ L(0, 1)p(0|x),

1 when L(1, 0)p(1|x) > L(0, 1)p(0|x).
(1.2.7)

Example. Let us continue with our example. Let g be a classifier. The risk of g is

R(g) =

∫
L(y, g(x))dF (x, y) =

∑
x1,x2,i

L(i, g(x1, x2))p(x1, x2, i)

=
∑
x1,x2

( 1∑
i=0

L(i, g(x1, x2))p(i|x1, x2)
)
p(x1, x2) =

∑
x1,x2

R(g(x1, x2)|(x1, x2))p(x1, x2),

(1.2.8)

where the conditional risk

R(g(x1, x2)|(x1, x2)) = L(0, g(x1, x2))p(0|x1, x2) + L(1, g(x1, x2))p(1|x1, x2)

is the average loss that g causes when classifying the objects with features (x1, x2). For
calculating risk, we multiply that loss with the proportion of those people p(x1, x2). When
there are few such individuals, i.e. p(x1, x2) ≈ 0, then such people do not influence
much the risk of g. If p(x1, x2) is big, then classifying (x1, x2) influences the whole risk
remarkably.

11



1.2.3 Symmetric loss

The Bayes classifier g∗ depends on loss function L. The most common loss function is
symmetric or 0-1 loss . For symmetric loss L(i, i) = 0 and the loss of misclassification
is always the same. Without loss of generality, it can be one. Hence, the symmetric loss
is

L(j, i) =

{
0 when i = j,

1 when i 6= j.
(1.2.9)

With this loss, the conditional risk is

R(i|x) =
k−1∑
j=0

L(j, i)p(j|x) =
∑

j 6=i

p(j|x) = 1− p(i|x). (1.2.10)

With other words, R(i|x) is the probability that x does not belong to the class i. From
(1.2.5)) we get the Bayes classifier

g∗(x) = arg min
i

R(i|x) = arg min
i

(1− p(i|x)) = arg max
i

p(i|x). (1.2.11)

When loss function is symmetric, then Bayes classifier assigns to every feature vector the
class with biggest conditional probability.

For every g, the conditional risk with symmetric loss function is

R(g(x)|x) = 1− p(g(x)|x),

i.e. R(g(x)|x) is the conditional probability of misclassification. Averaging the conditional
probability of misclassification over the feature distribution F (x), we get the (overall)
misclassification probability . Thus when loss-function is symmetric, then the risk of
a classifier is the probability of misclassification and the Bayes classifier has the lowest
(overall) misclassification probability.

Note that (by symmetric loss-function) the Bayes risk or misclassification probability
can be calculated as

R∗ =

∫
min

i
R(i|x)dF (x) =

∫
min

i
(1− p(i|x))dF (x) = 1−

∫
max

i
p(i|x)dF (x). (1.2.12)

The special case: k = 2. In this case p(1|x) + p(0|x) = 1, hence p(1|x) ≥ p(0|x) iff
p(1|x) ≥ 0.5. Thus, in this case (by symmetric loss)

g∗(x) =

{
1 if p(1|x) ≥ 0.5,

0 if p(1|x) < 0.5.
(1.2.13)

Note: when p(1|x) = 0.5, then R(g(x)|x) = 0.5 for every classifier and for such features,
the Bayes classifier can also assign class 0. For those features Bayes classifier is not unique.
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Since k = 2, the conditional risk of Bayes classifier at x is

R(g∗(x)|x) = min{1− p(0|x), 1− p(1|x)} = min{p(0|x), p(1|x)},

so that Bayes risk can be found as

R∗ =

∫
min{p(0|x), p(1|x)}dF (x). (1.2.14)

Exercise: Let k = 2 and the loss function L be defined as follows:

L(i, j) =





0, if i = j;
a, if i = 1, j = 0;
b, if i = 0, j = 1.

Find Bayes classifier via p(1|x) (i.e. generalize (1.2.13)). Find Bayes risk and generalize
(1.2.14). How these formulas look like when a = b?

Exercise: Let d = 1, k = 2. For every function h : R → R, let us define the loss
function

Jp(h) =

∫

R×Y
|h(x)− y|pdF (x, y).

Find
h∗p = arg inf

h
Jp(h), p = 1, 2.

Show that J1(h
∗
1) = R∗.

Exercise: Prove that (1.2.14) is equivalent to

R∗ =
1

2
− 1

2

∫
|2p(1|x)− 1|dF (x).

1.2.4 Densities

Let F (x|i), i = 0, . . . , k−1 be the conditional distribution (functions) of the feature vector
given the class is i. Thus, by the law of total probability

F (x) =
k−1∑
i=0

F (x|i)πi,

where the probability that randomly chosen object belongs to class i is

πi :=

∫

Rd

p(i|x)dF (x), i = 0, . . . , k − 1.
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Let fi be the density of F (x|i), i = 0, . . . , k−1 with respect to a reference measure. If the
reference measure is Lebesgue’i measure, then all densities are absolutely continuous and
fi is then the density as known from the basic probability course. When, for every i, the
distributions F (x|i) are discrete, then the reference measure is counting measure and the
functions fi are probability mass functions. Of course, it might be that some distributions
F (x|i) are discrete and some other continuous. Also, in this case there exists a reference
measures so that all distributions are absolutely continuous with respect to. One such a
reference measure can be F (x|0) + · · ·+ F (x|k − 1).

To summarize: the existence of fi w.r.t. some reference measure is not restrictive. In
the following, we denote the reference measure all conditional densities are absolutely
continuous with as dx. Hence, for every measurable function h

∫

Rd

h(x)dF (x|i) =

∫

Rd

h(x)fi(x)dx.

In this case also the distribution F (x) has the density f(x) =
∑

i fi(x)πi.

With conditional densities the probability p(i|x) is (the Bayes formula)

p(i|x) =
fi(x)πi

f(x)
.

Hence, the Bayes classifier (1.2.5) is

g∗(x) = arg min
i∈Y

k−1∑
j=0

L(j, i)
πifi(x)

f(x)
= arg min

i∈Y

k−1∑
j=0

L(j, i)πifi(x). (1.2.15)

Symmetric loss. For 0-1 loss, (1.2.15) is (recall also (1.2.11))

g∗(x) = arg max
i∈Y

πifi(x). (1.2.16)

Since R(i|x) = 1− p(i|x), the function R(i|x)f(x) is then

R(i|x)f(x) = f(x)− πifi(x) =
∑

j,j 6=i

πjfj(x).

Therefore, the Bayes risk is (recall (1.2.12)):

R∗ =

∫
min

i
R(i|x)dF (x) =

∫
min

i
R(i|x)f(x)dx =

∫
min

i

( ∑

j,j 6=i

πjfj(x)
)
dx

=

∫ (
f(x)−max

i
πifi(x)

)
dx = 1−

∫
max

i
πifi(x)dx.
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When k = 2 and L is symmetric, then the Bayes classifier (1.2.16) can be defined via
likelihood ratio as follows

g∗(x) =

{
1, if f1(x)

f0(x)
≥ π0

π1
;

0, else.
(1.2.17)

The Bayesi risk in this case is (recall (1.2.14))

R∗ =

∫
min {π1f1(x), π0f0(x)} dx. (1.2.18)

Example. In our example, π0 and π1 are the proportions of male and female individuals
in the population. Let p(x|0) and p(x|1) be the distribution of the features in different
classes:

p(x|0) = p(x1, x2|0) =
the number of men with the length x1 and weight x2

number of men
.

according to Bayes formula

p(i|x) =
p(x, i)

p(x)
=

p(x|i)πi

p(x)
, i = 0, 1.

Hence p(0|x) < p(1|x) iff p(x|0)π0 < p(x|1)π1 and (symmetric loss) the Bayes classifier is

g∗(x) =

{
0 if π0p(x|0) < π1p(x|1),

1 else.
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This is the formula (1.2.16). Bayes risk (1.2.14) is

R∗ =

∫
min{p(0|x), p(1|x)}dF (x) =

∑
x

min{p(0|x), p(1|x)}p(x)

=
∑

x

min{p(x|0)π0

p(x)
,
p(x|1)π1

p(x)
}p(x) =

∑
x

min{p(x|0)π0, p(x|1)π1}.

The right hand side of previous equalities is (1.2.18).

Exercise: Generalize the formulas (1.2.17) and (1.2.18) for the following loss function

L(i, j) =





0, if i = j;
a, if i = 1, j = 0;
b, if i = 0, j = 1.

Exercise: Let x the number of hours a student spends for studying. Let p(1|x) the
probability that a student passes the test given that he or she studies x hours. Assume

p(1|x) =
x

c + x
, c > 0.

Find the Bayes classifier to decide whether a student passes the test or not based on x.
Suppose that x is uniformly distributed from 0 to 4c, i.e

f(x) =
1

4c
I[0,4c].

Find πi, fi and Bayes risk (R∗ = 1
4
ln 5e

4
, π1 = 1− 1

4
ln 5).

Exercise: Prove that when π0 = π1, then (1.2.18) is

R∗ =
1

2
− 1

4

∫
|f1(x)− f0(x)|dx.

1.3 Reject option
The misclassification probability could be reduced by a possibility to reject the decision.
Formally, for a classifier, there is an additional output "r" that means that no decision
has been made. Hence, with reject option, the classifier is a function

g : Rd → Y ∪ {r}. (1.3.1)

Hence

g =
k−1∑
i=0

iICi
+ rIR,
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where {C0, . . . , Ck−1, R} is a partition of Rd; the part R is so-called reject region and
its complement A := ∪k−1

i=0 Ci is acceptance region .

Recall that Bayes classifier g∗(x) minimizes the conditional risk: R(g∗(x)|x) = mini R(i|x).
Hence, Bayes classifier is relatively risk-free when mini R(i|x) is small. Hence, it is natural
to consider the region R in the form

R(t) = {x : min
i

R(i|x) > t}, (1.3.2)

where t ≥ 0 is a threshold. In this case, the acceptance region is

A(t) = {x : min
i

R(i|x) ≤ t}

and on this region, it is natural to use Bayes classifier. Thus, we get a new classifier with
reject option as follows

gt(x) :=

{
arg mini R(i|x), if mini R(i|x) ≤ t ;
r, if mini R(i|x) > t.

The reject region should be as small as possible. Here the "smallness" of a set A is
measured in terms of F -probability:

P (A) :=

∫

A

f(x)dx =

∫

A

dF,

where f is the density of the distribution F . In other words, P (A) is the probability that
random feature vector takes a value in the set A. The following lemma shows that the
risk of gt is smallest amongst all classifiers with reject option and P (A) at least as big as
that of gt.
Recall that for any function h : Rd → R,

∫
h(x)dF (x) =

∫
h(x)f(x)dx.

Lemma 1.3.1 Let g a classifier with reject and acceptance region R and A, respectively.
When P (R) ≤ P (R(t)), then

∫

A

R(g(x)|x)dF (x) ≥
∫

A(t)

R(gt(x))dF (x) =

∫

A(t)

min
i

R(i|x)dF (x). (1.3.3)

Proof. Clearly, ∫

A

R(g(x)|x)dF (x) ≥
∫

A

min
i

R(i|x)dF (x).

Hence, it suffices to show that
∫

A

min
i

R(i|x)dF (x) ≥
∫

A(t)

min
i

R(i|x)dF (x). (1.3.4)
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The proof of (1.3.4) is left as the exercise.

Exercise: Prove the following inequality
∫

A

min
i

R(i|x)dF (x)−
∫

A(t)

min
i

R(i|x)dF (x) ≥ t(P (A)− P (A(t)) ≥ 0.

Symmetric loss-function and reject option. For symmetric loss-function, we have
R(i|x) = 1− p(i|x), hence

gt(x) :=

{
arg maxi p(i|x), kui maxi p(i|x) ≥ 1− t ;
r, kui maxi p(i|x) < 1− t. (1.3.5)

The region is decreasing as t increases R(t). Note that when t ≥ k−1
k
, then R(t) = ∅.

Hence, for k = 2, the reject option is only for t < 0.5 and denoting 0.5 − t =: c we get
that gt is in the following form

gt(x) :=





1, if p(1|x) ≥ 1
2

+ c ;
0, if p(1|x) ≤ 1

2
− c ;

r, if |1
2
− p(1|x)| < c.

(1.3.6)
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Chapter 2

Introduction to VC-theory

2.1 Supervised learning from data
We saw that when the conditional probabilities p(i|x) or, equivalently, the conditional
distribution F (y|x) is known for every x, then finding the best possible classifier g∗ is
easy (recall (1.2.5)). We also know that the probabilities p(i|x), and therefore the Bayes
classifier g∗ can easily be found if the class-conditional distributions Fi (or, equivalently,
the densities fi) and the probabilities πi are known for every i = 0, . . . k − 1 (recall
(1.2.15)). Knowing Fi and πi is equivalent to knowing the joint distribution F (x, y), since

F (x, y) =

y∑
i=1

Fi(x)πi.

However, in practice usually neither the conditional distribution F (y|x) nor the full
distribution F (x, y) is exactly known. Instead we have the (training) sample or

(training) data :
Dn := {(x1, y1), . . . , (xn, yn)} . (2.1.1)

This sample consists of n objects with known feature vectors x1, . . . , xn and corresponding
classes y1, . . . , yn. Typically, it is assumed that all pairs (xi, yi) are obtained independently
from the same unknown distribution F (x, y). Such a sample is called iid (independent
and identically distributed) random sample. As usually in statistics, these assumptions
are not always justified and can be wrong. However, iid sample is a natural assumption
to start with, hence during the supervised learning part of the course, we consider that
case. The objective of statistical pattern recognition is to find a good classifier
based on the iid sample Dn. In statistical learning terminology, the procedure of finding
a good classifier based on Dn is called supervised learning or training . The word
"supervised" reflects the fact that the training data are given with labels, i.e. for every
xi in the sample, the correct label yi is known.
The obtained classifier is thus a function that depends on data

gn : (Rd × Y)n × Rd → Y (2.1.2)
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and its risk
Rn := R(gn) =

∫
L(y, g(Dn, x))dF (x, y) (2.1.3)

depends on data as well. Hence Rn is a random variable and it is reasonable to design
gn such that it expected over all possible samples Dn risk were as small as possible. This
does obviously not guarantee that for given Dn the risk Rn is small as well.

When designing a classifier, it is natural to expect that it is an outcome of a rule that
applies for any n and any data. We shall see several rules in following sections, let us now
mathematically formulate a (classification or discrimination) rule as a sequence of
classifiers g1, g2, . . . , gk, . . . Essentially, a rule is an algorithm or principle that, in general,
does not depend on the size or configuration of the sample. However, applying a rule for
the data, we get a concrete classifier gn as in (2.1.2) that depends on the data.

For example, if k = 2, then a rule might be: if the sample y1, . . . , yn contains strictly
more ones as zeros, classify any unknown object as one, otherwise as zero. Such a rule
applies for any sample, but the outcome depends on the sample. Obviously, this is not
very smart rule, since it does not take into account the feature vectors.

2.2 Mathematical formulation
Let us formulate the introduced concepts in terms of probability theory. Let (Ω,F ,P)
be a probability space and (X,Y ) a random vector, where X is Rd-dimensional and Y is
Y-valued random variable. Let, ∀x ∈ Rd and ∀y ∈ R

F (y, x) := P(X ≤ x, Y ≤ y), F (y|x) := P(Y ≤ y|X = x), F (x|i) = P(X ≤ x|Y = i).

Here, for x, x′ ∈ Rd, the inequality x ≤ x′ is defined componentwise). Clearly (X,Y )
models the feature vector and its class.
For every classifier g, its risk is

R(g) = EL(Y, g(X)) =

∫
L(Y, g(X))dP.

If L is symmetric loss-function (1.2.9), then

R(g) =

∫
I{Y 6=g(X)}dP = P(Y 6= g(X))

so that (as we know) for symmetric loss the risk is the misclassification probability.

Let
Dn := ((X1, Y1), . . . , (Xn, Yn)) (2.2.1)
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iid copies of (X, Y ); Dn models the training data. The classifier gn depends on the vectors
(2.2.1), formally thus

gn(Dn, ·) : Rd 7→ Y . (2.2.2)

Given the data, i.e. given the values (Xi, Yi) = (xi, yi), i = 1, . . . , n, (2.2.2) is a fixed
classifier with fixed risk

Rn(Dn) = EL(Y, gn(Dn; X)),

where (X,Y ) is independent of Dn. Considering Dn random, we get that the risk Rn

depends on random sample Dn and, therefore, is a random variable.

2.3 Consistency
Since Rn = R(gn) depends on data, how to measure the goodness of gn? As mentioned
earlier, a possibility is to consider the expected risk ERn, where the expectation is taken
over all samples. Note that for every sample, Rn ≥ R∗. Hence ERn = R∗ iff Rn = R∗,
a.s. implying that expected risk equals to Bayes risk iff the classifier gn(Dn, ·) is the Bayes
classifier for almost every sample Dn. This is impossible for most cases in practice. Hence,
in general, ERn > R∗ for every n.

On the other hand, when dataset is big (n is large), then we have so much informa-
tion about unknown distribution F (x, y) that it should be possible to design a classifier
gn such that ER(gn) is close to R∗. That consideration brings us to consistent rules.
Recall that a classification rule is just a sequence of classifiers {gn}, where gn is as in
(2.2.2).

Definition 2.3.1 A classification rule {gn} is consistent for a certain distribution
F (x, y), if

ER(gn) → R∗ (2.3.1)

and strongly consistent , if
R(gn) → R∗ a.s.

If a rule is (strongly) consistent for every distribution F (x, y), it is called universally
(strongly) consistent .

Consistency characterizes a rule not a single classifier. Since 0 ≤ Rn ≤ maxi,j L(i, j) the
convergence (2.3.1) is equivalent to the convergence in probability , i.e. ∀ε > 0,

lim
n

P(R(gn)−R∗ > ε) = 0.

Consistency is a good property. A consistent rule guarantees that by increasing the
amount of data the probability that the risk is within a very small distance of the optimal
achievable gets arbitrarily close to one. Strong consistency means that by using more
data the error probability gets arbitrarily close to R∗ for every training sequence except
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for a set of sequences that has zero probability altogether. Since a.s. convergence implies
the convergence in probability, the strong consistency is indeed stronger property than
consistency.

It is important that for a consistent rule, even for big n, the classifier gn need not to
be similar or (in some sense) close to Bayes classifier g∗, i.e. the fact that {gn} is consis-
tent does not necessarily imply gn → g∗ (in some sense), but the classification properties
of gn and g∗ are close. In the terminology of Vapnik consistent rule imitates but does not
identify the Bayes classifier. But what would we expect from a good machine? To work
almost as good as the best possible or to look almost like the best possible?

A rule can be consistent for a certain class of distributions F (x, y), but may not be
consistent for others. However, in most of the cases, we do not have any idea about
F (x, y). Therefore, it is very desirable to have a rule that is consistent for all distribu-
tions. Such rules are universally consistent. The universal consistency is a very strong
requirement and for a while it was not clear whether universally consistent rules exists.

No super-rules. The existence of universally consistent rules might arise question,
whether there exists an universally consistent rule {gn} such that the speed of convergence
ER(gn) were fastest over all other rules for every distribution F (x, y). The following
theorem ([1], Thm 7.1) shows that such best rule does not exists.

Theorem 2.3.2 (No Free Lunch) Let k = 2 and L symmetric. For every ε > 0, n and
classifier gn, there exists a distribution F (x, y) such that R∗ = 0 and ER(gn) > 1

2
− ε.

Note that the theorem does not contradict the universal consistency.

Another question that might arise: whether there exists universally best super-rule, i.e.
rule that for every F (x, y) minimizes the risk over all other classifiers at least for big n.
This is not so – it can be shown that for every rule {gn}, there exists the distribution
F (x, y) (that depends on the rule) and another rule {g′n} such that

ER(g′n) < ER(gn), ∀n.

In the light of of Theorem 2.3.2, the non-existence of super-rule is not that surprising.
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2.4 Empirical risk minimization
In general, with the help of data, a good classifier is searched from a class of classifiers G.
Sometimes, the set G is also referred to as the model . Usually G is much smaller than
the class of all classifiers. If the distribution F (y, x) were known, we would choose the
classifier that minimizes the risk over G. In practice, however, instead of the distribution
F (y, x), we have the data Dn. Recall that every sample can be considered as the empirical
distribution with empirical distribution function Fn. Recall that for every (x, y) ∈ Rd+1

Fn(x, y) =
1

n

n∑
i=1

I{xi≤x,yi≤y},

and for any function h : Rd × Y → R,
∫

h(x, y)dFn(x, y) =
1

n

n∑
i=1

h(xi, yi). (2.4.1)

The empirical distribution (function) Fn is an estimate to unknown distribution (function)
F . Recall that Fn is a good estimate of F , because of the Glivenko-Cantelli theorem:

sup
x,y
|Fn(x, y)− F (x, y)| → 0, a.s..

This gives the idea: when calculating the risk R(g), replace the unknown F (x, y) by its
empirical version Fn(x, y) and use (2.4.1) to obtain the empirical risk

Rn(g) :=

∫
L(y, g(x))dFn(y, x) =

1

n

n∑
i=1

L(yi, g(xi)). (2.4.2)

The classifier gn is now the one that minimizes empirical risk over G, i.e.

gn = arg inf
g∈G

Rn(g).

This method of finding gn is called as empirical risk minimization (ERM) principle.
When L is symmetric, then empirical risk, in this case also called empirical error is

Rn(g) =
1

n

n∑
i=1

I{yi 6=g(xi)}.

Thus Rn(g) is proportional to the misclassified objects. When L is symmetric, then the
empirical risk minimization principle chooses such classifier(s) that minimizes the number
of misclassified objects (empirical or training error) in training sample.
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2.4.1 Empirical risk minimization in general

ERM is a simple yet powerful principle that applies in many fields of statistics. Let us
consider this principle in a broader context. Suppose we have an iid sample from F (x, y)

Dn := (x1, y1), . . . , (xn, yn), (2.4.3)

where (xi, yi) ∈ X × Y and X , Y are arbitrary. We interprate x1, . . . , xn as inputs and
y1, . . . , yn as corresponding outputs. The conditional distribution (function) of output
given the input x is F (y|x). The objective is to predict the output to an input x.

Let G be a class of functions X → Y , L(x, y) a loss function (depends on task) and
for every g ∈ G, the risk R(g) is (as previously)

R(g) :=

∫
L(y, g(x))dF (y, x). (2.4.4)

Examples of statistical problems

Classification (pattern recognition). Here Y = {0, . . . , k − 1} (classes) and g has val-
ues in Y . When L is symmetric, then the risk is the misclassification probability and the
best classifier over all possible functions is Bayes classifier:

g∗(x) = arg max
i

p(i|x).

Regression. Here Y = R and loss-function L is typically L(y, g) = (y − g)2. Risk is

R(g) =

∫
(y − g(x))2dF (x, y)

and the best possible prediction over all possible function is conditional mean:

g∗(x) =

∫
ydF (y|x).

Density estimation. Here sample consists of imputs, only x1, . . . , xn (formally Y = ∅) and
G is a class of densities. Let L(g) = − ln g. Thus the risk of g is likelihood contrast :

R(g) = −
∫

ln g(x)dF (x).

In case F has density f(x), then

R(g) = −
∫

ln g(x)f(x)dx

and the function that minimizes R(g) over all possible densities is f(x), i.e. g∗(x) = f(x).

ERM-principle: Replace risk (2.4.4) by empirical risk

Rn(g) :=

∫
L(y, g(x))dFn(y, x) =

1

n

∑
i

L(yi, g(xi)). (2.4.5)
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Examples of ERM-principles

Classification (pattern recognition) For symmetric L, the ERM-principle is minimizing
empirical error:

Rn(g) =
1

n

n∑
i=1

L(yi, g(xi)) =
1

n

n∑
i=1

I{(x,y):g(x)6=y}.

Regression. ERM-principle is the principle of least squares: minimize

Rn(g) =
1

n

n∑
i=1

L(yi, g(xi)) =
1

n

n∑
i=1

(yi − g(xi))
2.

Density estimation. ERM-principle is maximum likelihood principle: minimize

Rn(g) = − 1

n

n∑
i=1

ln g(xi).

This equals to maximizing the log-likelihood.

Thus, ERM has been successfully exploited in statistics under various names more than
100 years. Vapnik-Chervonenkis theory that studies ERM principle in general, provides
an unified approach all these (and many other) methods.

2.5 Approximation error and estimation error
In general, with the help of data, a good classifier is searched from a class of classifiers G.
Let gn be a classifier selected from G by some rule using data. The difference R(gn)−R∗ ≥
0 can split into two parts:

R(gn)−R∗ =
(
R(gn)− inf

g∈G
R(g)

)
+

(
inf
g∈G

R(g)−R∗
)
. (2.5.1)

The first part – estimation error – depends on the sample and the method of choosing
gn. Since R(gn) depends on sample, so does the estimation error. The larger is G, the
larger estimation error.
The second part – approximation error – depends on G but not on sample. The
bigger G, the smaller approximation error. If G is the class of all classifiers, then the
approximation error is zero. Then the estimation error is typically very big.

To get a consistent rule by selecting the classifiers from G, it has to depend on n and
Gn has to grow so that the approximation error tends to zero. On the other hand, the
growth must be slow enough to control the estimation error. The question of the right
size – so-called complexity of the class G – is central in the theory of statistical learning.
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As an example of too large G, let it be the class of all classifiers, and let gn be chosen
using empirical risk minimization. When the distribution of X is absolutely continuous,
then with probability one, all sample points xi are different. Then, clearly, the class G
contains classifiers that classify all training sample correctly, i.e. the empirical error is
zero. One such a classifier is, for instance, the following:

gn(x) =

{
yi if x = xi,

0 otherwise.

Note that gn(X) = 0, a.s.. If L is symmetric, then

R(gn) = P(Y 6= g(X)) = P(Y 6= 0).

Thus R(gn) does not depend on the training sample, and it is, in general, strictly positive.
Typically R∗ = P(g∗(X) 6= Y ) < P(Y 6= 0), hence the estimation error P(Y 6= 0)−R∗ > 0
is positive constant for any n. Obviously such a gn is not what we expect from a good
method, a reason for bad gn is too large G. This phenomenon is called overfitting .
Note that when G is maximal, then infg∈G R(g) = R∗ and the approximation error equals
to zero.

As an example of too little G, let it consists of one function, only, i.e. G = {g}.Then
gn = g and R(gn) = R(g) = infG R(g), i.e. estimation error is zero. However, the approx-
imation error is now R(g)−R∗, that can be very big.

Hence, a good classifier gn should be chosen from a class that in some sense has opti-
mal size. Instead of the physical size, what matters is how many different classifiers the
class has. This is called complexity .

Estimation and generalization error

Let G be a class of classifiers, and let gn ∈ G chosen by some method (not necessarily
ERM) from that class using training sample. Recall that sample is random, so is gn and
its risk R(gn). Also recall that Rn(gn) is the empirical risk of gn that, obviously, is random
as well. The central objects of VC- theory are:

• estimation error (excess risk):

R(gn)− inf
g∈G

R(g)

• generalization error:
|R(gn)−Rn(gn)|.

The theory aims to find upper bounds to these random variables. Typical bounds are in
form

P
(
R(gn)− inf

g∈G
R(g) > ε) ≤ δ1(ε, n,G) (2.5.2)

P
(|R(gn)−Rn(gn)| > ε) ≤ δ2(ε, n,G), (2.5.3)
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where δi(ε, n,G) are functions that presumably converge to zero as n grows. The bounds
(2.5.2) are important for consistency, the bounds (2.5.3) allow to estimate the unknown
risk R(gn) and unknown quantity infg∈G R(g) using the (known) empirical risk Rn(gn):

P(inf
g∈G

R(g) ≤ Rn(gn) + ε
) ≥ P

(
R(gn) ≤ Rn(gn) + ε

) ≥ 1− δ2(ε, n,G). (2.5.4)

In statistical learning, ε is usually considered as a function of δ, so that (2.5.2) and (2.5.4)
can be reformulated as

with probability 1− δ (over samples): R(gn)− inf
g∈G

R(g) ≤ ε1(δ, n,G) (2.5.5)

with probability 1− δ (over samples): inf
g∈G

R(g) ≤ R(gn) ≤ Rn(gn) + ε2(δ, n,G). (2.5.6)

The inequalities (2.5.5) and (2.5.6) are sometimes called PAC (probably almost correct)
bounds.
Thus, important inequalities are (2.5.2) and (2.5.3). Following simple but yet powerful
lemma shows that when gn is obtained by ERM -principle, then both inequalities follow
from the upper bound to the quantity supg∈G |Rn(g)−R(g)|.
Lemma 2.5.1 (Vapnik, Chervonenkis, 1974) Let gn ∈ G be arbitrary classifier and
let, ĝ ∈ G be obtained by empirical risk minimization, i.e.

ĝ = arg inf
g∈G

Rn(g).

Then

|Rn(gn)−R(gn)| ≤ sup
g∈G

|Rn(g)−R(g)| (2.5.7)

R(ĝ)− inf
g∈G

R(g) ≤ 2 sup
g∈G

|Rn(g)−R(g)|. (2.5.8)

Proof. The first inequality is obvious.
The second inequality: Let g∗ ∈ G be such that

R(g∗) = inf
g∈G

R(g).

For time being, let us suppose that g∗ exists. Then

R(ĝ)− inf
g∈G

R(g) = R(ĝ)−R(g∗) = R(ĝ)−Rn(ĝ) + Rn(ĝ)−Rn(g∗) + Rn(g∗)−R(g∗)

≤ R(ĝ)−Rn(ĝ) + Rn(g∗)−R(g∗)

≤ 2 sup
g∈G

|Rn(g)−R(g)|.
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If the optimal g∗ does not exists, then ∀ ε > 0 ∃ gε ∈ G such that R(gε) ≤ infg∈G R(g)+ ε.
Then

R(ĝ)− inf
g∈G

R(g) ≤ R(ĝ)−R(gε) + ε

≤ 2 sup
g∈G

|Rn(g)−R(g)|+ Rn(ĝ)−Rn(gε) + ε

≤ 2 sup
g∈G

|Rn(g)−R(g)|+ ε.

Since ε was arbitrary, we obtain (2.5.8).

Thus, the inequalities like

P
(
sup
g∈G

|Rn(g)−R(g)| > ε
)
≤ δ(ε, n,G). (2.5.9)

are central in VC-theory. These inequalities are based on so-called large deviation or
concentration inequalities that are an important subject of probability theory. It
turns out that the probability

P
(
sup
g∈G

|Rn(g)−R(g)| > ε
)

(2.5.10)

depends on the complexity of the class G. In an example above, we saw that when G
is too large (too complex) and X absolutely continuous, then for (almost) any sample
there exists g ∈ G such that Rn(g) = 0; in this case for any ε < R(g) and for any n, the
probability (2.5.10) equals to one.

2.6 Shatter coefficient and VC-dimension
In this subsection, we consider the most common measure of complexity: VC dimension.
Let A be a class of sets on Rd.

Definition 2.6.1 For any n ∈ N, the shatter coefficient of A is

SA(n) := max
x1,...,xn

|{x1, . . . , xn} ∩ A : A ∈ A}|.

Thus, SA(n) is the maximal number of different subsets of a set of n points which can
ne obtained by intersecting it with elements of A. Clearly SA(n) ≤ 2n and the equality
holds iff there exist n points {x1, . . . , xn} so that all possible subsets can be obtained
by intersecting it with elements of A. If this happens, we say that A shatters the set
{x1, . . . , xn}.
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Examples:

1. Let d = 1 and A := {(−∞, a] : a ∈ R}. Then SA(n) = n + 1.

2. Let d = 2 and A = {(−∞, a1]× (−∞, a2] : a = (a1, a2) ∈ R2}. Then ( Exercise )

SA(n) = 1 +
n∑

k=1

(n− k + 1) = 1 +
n(n + 1)

2
.

3. Let d = 1 and A := {[a, b] : a, b ∈ R}. Then ( Exercise )

SA(n) = 1 +
n∑

k=1

(n− k + 1) = 1 +
n(n + 1)

2
.

4. Let d = 2 and A = {x : w′x ≥ b : w ∈ R2, b ∈ R}. Thus A is the class of all
halfspaces. Then ( Exercise )

SA(2) = 4, SA(3) = 8, SA(4) = 14.

5. The example above can be generalized. Let A be the set of halfspaces in Rd. Then,
for n ≥ d + 1

SA(n) = 2
d∑

i=0

(
n− 1

i

)
≤ 2(n− 1)d + 2

([1], Cor. 13.1)

The properties of shatter coefficient:

Theorem 2.6.2 Let A and B be classes of subsets of Rd, and let n, m ≥ 1 be integers.
Then

1. SA(n) ≤ |A|;
2. SA(n + m) ≤ SA(n)SA(m);

3. If C = A ∪ B, then SC(n) ≤ SA(n) + SB(n);

4. If C = {Ac : A ∈ A}, then SA(n) = SC(n);

5. If C = {A ∩B : A,∈ A and B ∈ B}, then SC(n) ≤ SA(n)SB(n);

6. If C = {A ∪B : A,∈ A and B ∈ B}, then SC(n) ≤ SA(n)SB(n);

7. If C = {A×B : A,∈ A and B ∈ B}, then SC(n) ≤ SA(n)SB(n).

Proof. Exercise .
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Definition 2.6.3 TheVapnik-Cervonenkis (VC) dimension V of a class A is de-
fined as the largest integer n such that SA(n) = 2n. If SA(n) = 2n for all n, then V = ∞.

The definition is correct, because if SA(n) < 2n, then for any m > n, SA(m) < 2m.

Thus, VC dimension of the class A is the capacity of the largest set that the class A
shatters. In other words, if VC dimension is V then for any n > V , there exists no set
{x1, . . . , xn} that class A shatters.

Examples:

1. Let d = 1 and A := {(−∞, a] : a ∈ R}. Then V = 1. No set of two elements can be
shattered.

2. Let d = 2 and A = {(−∞, a1]× (−∞, a2] : a = (a1, a2) ∈ R2}. Then SA(2) = 4 = 22

and SA(3) = 1 + 6 = 7 < 23. Hence V = 2.

3. The previous example can be generalized: if A = {(−∞, a1] × · · · × (−∞, ad] :
(a1, . . . , ad) ∈ Rd}, then V = d ( Exercise ).

4. Let d = 1 and A := {[a, b] : a, b ∈ R}. Then SA(2) = 4 = 22 and SA(3) = 1 + 6 =
7 < 23. Hence V = 2.

5. The previous example can be generalized: if A = {[a1, b1]×· · ·× [ad, bd] : a, b ∈ Rd},
i.e. A is the class of all retangles, then V = 2d ([1], Thm. 13.8).

6. Let A be the set of halfspaces in Rd. Then, taking account that

k∑
i=0

(
k

i

)
= 2k,

we get

SA(d + 1) = 2
d∑

i=0

(
d

i

)
= 2 · 2d = 2d+1

SA(d + 2) = 2
d∑

i=0

(
d + 1

i

)
= 2(2d+1 − 1) < 2d+1,

so that V = d + 1.

7. Let A = {x ∈ Rd : ‖x− a‖ ≤ r, a ∈ Rd, r ≥ 0} i.e. A is the class of all closed balls
in Rd. Then V ≤ d + 2 ([1], Cor. 13.2).

8. In A is the class of convex polygons in R2, then V = ∞. Indeed, putting, for any
n, the points x1, . . . , xn in a circle, it is easy to see that any subset can be picked
by a convex polygon.
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By definition, if for a class A, the VC dimension V is finite, then for any n > V , SA(n) <
2n. The following important lemma shows that in this case the growth is polynomial with
power V . For the proof of the following lemma, see [1], Thm 13.2 and Thm 13.3, also [2],
Corollary 1.3.

Lemma 2.6.1 (Sauer’s lemma) Let A be a class of sets with VC dimension V < ∞.
Then, for all n.

SA ≤
V∑

i=0

(
n

i

)
≤ (n + 1)V

and for all n ≥ V ,
SA ≤

(ne

V

)V

Hence, if V ≥ 3, then SA ≤ nV .

2.7 Vapnik-Cervonenkis inequality and risk bounds
Empirical measures. Let Z1, . . . , Zn be iid random vectors in Rd. Recall that for any
(measurable) set A ⊂ Rd, the empirical measure Pn(A) is the proportion of Zi’s in
the set A:

Pn(A) :=
1

n

n∑
i=1

I{Zi∈A}.

Given A, Pn(A) is a random variable with expectation

EPn(A) = P(Z1 ∈ A) =: P (A)

Note that nPn(A) ∼ B(n, P (A)). By SLLN, Pn(A) → P (A), a.s.. Moreover, it is also
known that by so-called Höffding’s inequality for every ε > 0

P(|Pn(A)− P (A)| > ε) ≤ 2 exp[−2nε2]. (2.7.1)

Note that by Borel-Cantelli lemma, from (2.7.1) the convergence Pn(A) → P (A), a.s.
follows.

Exercise: Let A be a class of measurable sets. Prove that

P(sup
A∈A

|Pn(A)− P (A)| > ε) ≤ 2|A| exp[−2nε2]. (2.7.2)
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VC inequality. VC inequality strengthes (2.7.2) for infinite classes with finite VC-
dimension.

Theorem 2.7.1 (Vapnik and Cervonenkis’ 71) For any class of sets A, for any n
and ε > 0,

P
(

sup
A∈A

|Pn(A)− P (A)| > ε
)
≤ 8SA(n) exp[− ε2

32
n] (2.7.3)

E
(

sup
A∈A

|Pn(A)− P (A)|
)
≤ 2

√
lnSA(n) + ln 2

n
. (2.7.4)

For the proof of (2.7.3), see [1], Thm. 12.5; for the proof of (2.7.4), see [2], Thm 1.9.

The first inequality (2.7.3) is important and not trivial. To get from (2.7.3) an inequality
like the second one (2.7.4) (with possible bigger constants) is rather easy. Indeed, it is
not difficult to see that the following proposition holds.

Proposition 2.7.1 Let Z nonnegative random variable so that for every ε > 0

P(Z > ε) ≤ C(n) exp[−A(n)ε2], (2.7.5)

where A(n) > 0 and C(n) are independent of ε. Then

EZ ≤
√

ln C(n) + 1

A(n)
. (2.7.6)

Exercise: Prove Proposition. Hint: Use

(EZ)2 ≤ EZ2 =

∫ u

0

P(Z2 > t)dt +

∫ ∞

u

P(Z2 > t)dt ≤ u +

∫ ∞

u

P(Z2 > t)dt.

Find u that minimizes the upper bound.

Corollary 2.7.1 If A has finite VC-dimension V , then

P
(

sup
A∈A

|Pn(A)− P (A)| > ε
)
≤ 8(n + 1)V exp[− ε2

32
n] (2.7.7)

E
(

sup
A∈A

|Pn(A)− P (A)|
)
≤ 2

√
V ln(n + 1) + ln 2

n
. (2.7.8)

Proof. Just use the inequality SA ≤ (n + 1)V in (2.7.3) and (2.7.4).

Exercise: Show how (2.7.7) implies the Clivenko-Cantelli theorem:

sup
x
|Fn(x)− F (x)| → 0, a.s..
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Risk bounds for symmetric (0-1) loss. Let us consider the symmetric loss function,
i.e.

L(g(x), y) = IAg , Ag := {(x, y) : g(x) 6= y} ⊂ Rd × {0, . . . , k − 1}.
Then, with Zi = (Xi, Yi)

R(g) = P (Ag), Rn(g) = Pn(Ag).

If these equalities are not obvious, recall that

R(g) = P(g(X) 6= Y ) = P((X1, Y1) ∈ Ag) = P (Ag),

Rn(g) =
1

n

n∑
i=1

I{g(Xi)6=Yi} =
1

n

n∑
i=1

I{(Xi,Yi)∈Ag} = Pn(Ag).

Hence (2.7.3) and (2.7.4) are now

P
(
sup
g∈G

|Rn(g)−R(g)| > ε
)
≤ 8SAG(n) exp[−nε2

32
] (2.7.9)

E
(

sup
g∈G

|Rn(g)−R(g)|
)
≤ 2

√
lnSAG(n) + ln 2

n
, (2.7.10)

where
AG = {Ag : g ∈ G}.

When VC-dimension of class AG, say V , is finite, then this can be used by estimating
SAG(n) to obtain the bounds (2.7.7) and (2.7.8). The VC-dimension of class AG is some-
times called the graph-dimension of G .

Risk bounds for symmetric (0-1) loss and binary classification. Note that for
k = 2 (binary classification) then any classifier g is in the form of IA so that the class of
classifiers G is uniquely determined by the class of sets A. Therefore, in this case the shat-
tering coefficient and VC-dimension ofA are also called the shattering coefficient of G
and VC-dimension of G . Now for any binary classifier g = IA, set Ag is then

Ag = {A× {0} ∪ Ac × {1}}.
Again, recall that Ag ∈ Rd × {0, 1}, but A ⊂ Rd. It is rather easy to see ([1], Thm.
13.1) that the shattering coefficient of AG equals to that one of A, so that for binary
classification the graph dimension of G equals to VC dimension of G (equivalently, to VC
dimension of A). Hence, for binary classification and symmetric risk, the risk bounds
(2.7.9) and (2.7.10) are

P
(
sup
g∈G

|Rn(g)−R(g)| > ε
)
≤ 8SA(n) exp[−nε2

32
] ≤ 8(n + 1)V exp[−nε2

32
] (2.7.11)

E
(

sup
g∈G

|Rn(g)−R(g)|
)
≤ 2

√
lnSA(n) + ln 2

n
≤ 2

√
V ln(n + 1) + ln 2

n
, (2.7.12)
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where V is the VC-dimension of G. Hence, if V < ∞, then δ(ε, n,G) converges towards
zero exponentially fast and sample size n grows.

Exercise: Prove the following inequalities: (2.7.13), (2.7.14) and (2.7.15):

ER(ĝn)− inf
g∈G

R(g) ≤ 4

√
V ln(n + 1) + ln 2

n
(2.7.13)

P
(
R(ĝn)− inf

g∈G
R(g) > ε

)
≤ 8(n + 1)V exp[−nε2

128
], (2.7.14)

and with probability 1− δ

R(gn) ≤ Rn(gn) + 2

√
8(V ln(n + 1)− ln δ + ln 8)

n
. (2.7.15)

where ĝ ∈ G is the empirical risk minimizer and gn ∈ G is arbitrary classifier.

Exercise: Prove that for V < ∞,

R(ĝn) → inf
g∈G

R(g) a.s., ER(ĝn) → inf
g∈G

R(g). (2.7.16)

Remarks: 1. The inequalities (2.7.3) and (2.7.4) are not the sharpest possible. In the
original paper of Vapnik and Cervonenkis, the better exponent −nε2

8
was instead of −nε2

32
.

For some better exponents see [1], 12.8 also [2]. In the book of Vapnik ([5], Thm 4.1) the
VC inequality (2.7.3) is given in the form

P
(

sup
A∈A

|Pn(A)− P (A)| > ε
)
≤ 4SA(2n) exp[−(ε− 1

n
)2n] (2.7.17)

The sharper VC inequalities yield to the sharper bounds also in (2.7.14). For all these
improvements, the bounds are in general form A exp[−cε2n], where A and c are some con-
stants and this cannot in general be improved. An exception is the case when infg∈G R(g) =
0 and then the risk bound on (2.7.14) is A exp[−cεn] i.e. ε instead of ε2 that for small ε
in a substantial improvement (see [1], 12.7).
It turns out that with additional work, the ln-factor ban be removed from the inequality
(2.7.13), i.e. it holds ([2], 1.4.6)

ER(ĝn)− inf
g∈G

R(g) ≤ c

√
V

n
, (2.7.18)

where c on konstant. For n big enough (2.7.18) is better than (2.7.13).

2. When L is symmetric but the number of classes is bigger then two, then the in-
equalities obviously hold with V being the graph-dimension of G.
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2.8 Complexity regularization
Recall that for symmetric loss the finite graph-dimension ( VC-dimension for binary clas-
sification) V implies that the following convergences (2.7.16) hold:

R(ĝn) → inf
g∈G

R(g) a.s., ER(ĝn) → inf
g∈G

R(g).

If the approximation error of G equals to zero, i.e. G is such that

inf
g∈G

R(g) = R∗, (2.8.1)

then these two convergences above would be the (strong) consisteny of ERM rule. How-
ever, usually (that depends on F (x, y)), if (2.8.1) holds, then G is so big (complex) that
V = ∞. Then the convergences above would not hold true any more. A way out is to
consider the sequence of classes models Gn so that the complexity of Gn increases with n
so that the approximation error goes to zero. On the other hand, the convergence cannot
be too fast to control the estimation error and avoid overfitting. To find the suitable
classes (models) Gn and a method for selecting the classifier from the set of models is the
issue of complexity regularization .

Sieves. Perhaps the simplest complexity regularization method is the following. Let

G1 ⊂ G2 ⊂ · · ·

be such that the approximation error goes to zero as k grows:

lim
k

inf
g∈Gk

R(g) = R∗. (2.8.2)

Since the classes are increasing, their complexity (e.g. graph-dimension) increases when
k grows. Let n 7→ k(n) be a function such that k(n) → ∞ as n → ∞. Typically k is
increasing. For every n, we now choose a classifier gn with help of data from Gk(n) (for
instance, by ERM). Then

R(gn)−R∗ =
(
R(gn)− inf

g∈Gk(n)

R(g)
)

+
(

inf
g∈Gk(n)

R(g)−R∗).

Since k(n) → ∞ as n → ∞, then the approximation error goes to zero. On the other
hand, the complexity of Gk(n) increases. If this increase is not too large and the estimation
error can be controlled, then the consistency can achieved. As an example of such result
let us consider the following theorem ([1], Thm. 18.1). In this theorem, let L be symmetric
and, for every n, gn = ĝk(n) is obtained by ERM, i.e.

gn = ĝk(n) = arg inf
g∈Gk(n)

Rn(g). (2.8.3)
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Theorem 2.8.1 Let Gk be such that for every distribution F (x, y) (2.8.2) holds. Let
k(n)be such that

lim
n

k(n) = ∞, lim
n

Vk(n) ln n

n
= 0, (2.8.4)

where Vk is the graph-dimension of Gk. Then the rule {gn} as in (2.8.3) is strongly
universally consistent.

Exercise: Prove the theorem.

Remark. The theorem does not require that G1 ⊂ G2 ⊂ · · · (sieves), but in most
cases in practice it is so.

Structural risk minimization (SRM). SRM is applying ERM simultaneously to
several classes. Let again Gk be the classes with increasing complexity (usually sieves);
let Vk measure the complexity of Gk (say graph-dimension). Then, for every k and n
the positive penalty term C(Vk, n) is defined. Typically C(V, n) increases in V and
decreases in n, for instance

C(V, n) = a

√
V ln n + b

n
,

where a, b are some constants.

SRM: for every k and n, find ĝk,n that minimizes empirical risk over Gk:

ĝk,n = arg inf
g∈Gn

Rk(g).

Now choose from the sequence ĝ1,n, ĝ2,n, . . . the one that minimizes

Rn(ĝk,n) + C(Vk, n).

over k ≥ 1. Formally,

gn = ĝk(n),n, where k(n) = arg inf
k

(
Rn(ĝk,n) + C(Vk, n)

)
. (2.8.5)

The difference with the method described above is that k(n) is chosen automatically by
data. Note that when C(Vk, n) is very small in comparison with Rn(ĝk,n), then minimiz-
ing Rn(ĝk,n) + C(Vk, n) were almost the same as minimizing Rn(ĝk,n) so that then k(n)
were typically very large – overfitting. On the other hand, when C(Vk, n) is very big in
comparison with Rn(ĝk,n), then minimizing Rn(ĝk,n) + C(Vk, n) were almost the same as
minimizing C(Vk, n), and since it increases with k, we would have that k(n) were typically
very small – underfitting. Hence, choosing correct penalty is crucial.

Exercise: Suppose G1 ⊂ G2 ⊂ · · · . Prove that SRM classifier gn as in (2.8.5) can be
defined as

gn = arg inf
∪kGk

(
Rn(g) + C(g, n)

)
, (2.8.6)

36



where C(g, n) = C(Vk, n), if g ∈ Gk/Gk−1.

Let to the end of this paragraph, L be symmetric. Then, from (2.7.13) we obtain:

ER(ĝk,n)−R∗ =
(
ER(ĝk,n)− inf

g∈Gk

R(g)
)
+

(
inf

g∈Gk

R(g)−R∗
)

≤ 4

√
Vk ln(n + 1) + ln 2

n
+

(
inf

g∈Gk

R(g)−R∗
)
, (2.8.7)

where Vk is graph-dimension of Gk. We aim to minimize ER(ĝk,n) over k. If we knew
infg∈Gk

R(g), we would minimize the right side of (2.8.7). It turns out that SRM almost
does the job. As an example, consider the following result ([2] Thm. 1.20 ja 1.6.3), where
the penalty is as follows

C(Vk, n) = 2

√
Vk ln(n + 1) + ln 2

n
+

√
ln k

n
. (2.8.8)

Theorem 2.8.2 Let, for any k, the graph-dimension Vk finite. Let gn be obtained by
SRM with penalty (2.8.8). Then

ER(gn)−R∗ ≤ min
k

[√Vk ln(n + 1) + ln 2

n
+

(
inf

g∈Gk

R(g)−R∗
)
+

√
ln k

n

]
+

√
1

2n
. (2.8.9)

Corollary 2.8.1 Let Gk be such that for every distribution F (x, y) (2.8.2) holds. Then
{gn} is universally consistent.

Exercise: Prove corollary.

The following theorem ([1], Thm. 18.2) claims that {gn} is also strongly universally
consistent. The theorem is proven for binary classification, so Vk is VC-dimension of Gk.
The penalty is

C(Vk, n) =

√
32Vk ln n + 1

n
. (2.8.10)

Theorem 2.8.3 Let Gk be such that for every distribution F (x, y) (2.8.2) holds. Assume
that VC dimensions Vk satisfy

∞∑

k=1

e−Vk < ∞. (2.8.11)

Then {gn} based on SRM with penalty (2.8.10) is strongly universally consistent.

Note: when supk Vk < ∞, then the assumption (2.8.11) holds. If Vk → ∞, then without
loss of generality we can assume that for every k Vk < Vk+1 (just choose a subsequence)
and then (2.8.11) holds, because Vk is always an integer.
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Finally note: suppose the distribution is such that the Bayes rule g∗ ∈ ∪kGk, i.e. for
a ko, g∗ ∈ Gko . The corresponding ERM-classifier gko,n satisfy (2.7.18)

ER(ĝko,n)−R∗ ≤ C(ko)

√
1

n
,

where C(ko) is a constant depends on ko. Hence, if we knew the right class Gko , we would
use ERM using this class, only. As a result, we would get that that our ERM classifier
gn = ĝko,n has the property

ER(gn)−R∗ = O
(√

1

n

)
.

It is also known that this is the best possible rate. On the other hand, from Theorem
2.8.2, it follows that in this case gn obtained by SRM gives the rate:

ER(gn)−R∗ ≤
√

Vko ln(n + 1) + ln 2

n
+

√
ln ko

n
+

√
1

2n
≤ B(ko)

√
ln(n + 1) + ln 2

n
,

where B(ko), again, is a constant, depending on ko. Hence, without knowing the correct
class Gko (true model), SRM-principle gives us classifier gn so that ER(gn)−R∗ converges
to zero with almost the same speed with some additional

√
ln n factor, i.e.

ER(gn)−R∗ = O
(√

ln n

n

)
.

This is not so by the sieves method described above, because the speed depends on the
prescribed sequence k(n).

General regularization. Let G be a (complex) class of functions (with infinite graph-
dimension, for instance), but to every function we define individual penalty C(g, n). The
overall classifier gn is now

gn = arg inf
g∈G

(
Rn(g) + C(n, g)

)
. (2.8.12)

Typically C(g, n) depends on g via some complexity measurement v(g) and C(v, n) is
increasing in v and decreasing in n. The measurement v depends on the class of functions
and task, it can be its norm, description length, degree etc. Note that SRM (2.8.6)is a
special case of (2.8.12), where G = ∪kGk and g 7→ C(g, n) is constant on G1,Gk/Gk−1,
k = 2, 3, . . . .. When g ∈ Gk/Gk−1, then v(g) = Vk.
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Chapter 3

Linear discrimination

3.1 Preliminaries

3.1.1 Hyperplane and the distance from it

Let X be a Hilbert space. A hyperplane is the set

H := {x : 〈w, x〉+ w0 = 0},

where w ∈ X. The distance of a point y ∈ X from H is

d(y, H) =
1

‖w‖
∣∣〈w, y〉+ w0

∣∣.

Without loss of generality w can be such that ‖w‖ = 1. Then defining

h(x) := 〈w, x〉+ w0,

we get that the distance of y from the hyperplane {x ∈ X : h(x) = 0} equals to |h(y)|.

If X = Rd, then 〈w, x〉 = w′x. Hence the distance of y from

H := {x ∈ X : w′x + w0 = 0}

is
d(y,H) =

|w′y + w0|
‖w‖ =

|h(y)|
‖w‖ , where h(x) = w′x + w0.

39



3.1.2 Decomposition of covariance matrix

Let X,Y random variables. Recall that

Var(X) = E(Var[X|Y ]) + Var(E[X|Y ]).

Let X d-dimensional random vector, m = EX ∈ Rd. The covariance matrix of X is

Cov(X) = E(X −m)(X −m)′ = E(XX ′)−mm′. (3.1.1)

Proposition 3.1.1 Let Y be a random variable. Then

Cov(X) = E
(
E[(X − E(X|Y ))(X − E(X|Y ))′|Y ]

)
+ E

(
(E(X|Y )−m)(E(X|Y )−m)′

)

or, equivalently,
Cov(X) = E

(
Cov[X|Y ]

)
+ Cov

(
E[X|Y ]

)
. (3.1.2)

Proof. To see this, note that

E(X −m)(X −m)′ = E
(
E[(X −m)(X −m)′|Y ]

)
=

E
(
E

[(
X − E(X|Y ) + E(X|Y )−m

)(
X − E(X|Y ) + E(X|Y )−m

)′|Y ])
.

Conditional expectation is linear, i.e.

E[(X − E(Y |X))(E(X|Y )−m)′|Y ] = E[(E(X|Y )−m)(X − E(X|Y ))′|Y ] = 0.

Hence

E
[(

X − E(X|Y ) + E(X|Y )−m
)(

X − E(X|Y ) + E(X|Y )−m
)′|Y ]

=

E
[(

X − E(X|Y )
)(

X − E(X|Y )
)′|Y ]

+ E[(E(X|Y )−m)(E(X|Y )−m)′|Y ].

Let now Y be {0, 1, . . . , k − 1} - valued. Denote

mi := E[X|Y = i], πi = P(Y = i), Σi := Cov[X|Y = i], ΣX := Cov(X).

Then (3.1.2) is

ΣX =
k−1∑
i=0

πiΣi +
k−1∑
i=0

πi(mi −m)(mi −m)′ (3.1.3)

Denoting

ΣW :=
k−1∑
i=0

πiΣi, ΣB :=
k−1∑
i=0

πi(mi −m)(mi −m)′

and then (3.1.3) is
ΣX = ΣW + ΣB.

The matrices ΣW and ΣB are interpreted as within-classes and between-classes co-
variances, respectively.

Exercise: Prove that for k = 2,

ΣB = π1π0(m1 −m0)(m1 −m0)
′ (3.1.4)
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Sample covariance matrix Given sample (x1, y1), . . . , (xn, yn), the quantities πi, ΣX ,
Σi, mi are estimated as follows:

Σ̂X :=
1

n

n∑
j=1

(xj − m̂)(xj − m̂)′, m̂ :=
1

n

n∑
j=1

xj,

Σ̂i :=
1

ni

∑
j:yj=i

(xj − m̂i)(xj − m̂i)
′, π̂i :=

ni

n
, m̂i =

1

ni

∑
j:yj=i

xj, i = 0, . . . , k − 1

Decomposition (3.1.2) is now

Σ̂X =
k−1∑
i=0

π̂iΣ̂i +
k−1∑
i=0

π̂i(m̂i − m̂)(m̂i − m̂)′

=
1

n

k−1∑
i=0

∑
j:yj=i

(xj − m̂i)(xj − m̂i)
′ +

1

n

k−1∑
i=0

ni(m̂i − m̂)(m̂i − m̂)′.

Multiplying both sides by n, we get

S :=
n∑

j=1

(xj − m̂)(xj − m̂)′ =
k−1∑
i=0

∑
j:yj=i

(xj − m̂i)(xj − m̂i)
′ +

k−1∑
i=0

ni(m̂i − m̂)(m̂i − m̂)′

=
k−1∑
i=0

Si +
k−1∑
i=0

ni(m̂i −m)(m̂i −m)′ = SW + SB,

where

Si :=
∑

j:yj=i

(xj − m̂i)(xj − m̂i)
′, SW :=

k−1∑
i=0

Si, SB :=
k−1∑
i=0

ni(m̂i − m̂)(m̂i − m̂)′.

are within-classes and between-classes scatter matrixes . For two classes

SB =
n1n0

n
(m̂1 − m̂0)(m̂1 − m̂0)

′. (3.1.5)
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3.2 Linear discriminant
Assumption: In this chapter, when not explicitly specified, we consider binary classifi-
cation with symmetric loss. Hence, we have training data (x1, y1), . . . , (xn, yn), xi ∈ Rd,
yi ∈ {0, 1}.

Recall that in this case the Bayes classifier and Bayes risk are

g∗(x) =

{
1 if p(1|x) ≥ 0.5,

0 if p(1|x) < 0.5.
(3.2.1)

R∗ = R(g∗) = P(g∗(X) 6= Y ) = inf
g:Rd→{0,1}

P(g(X) 6= Y ) = E
(
min{p(1|X), 1− p(1|X)}),

where p(1|x) = P(Y = 1|X = x).

Linear discriminant (linear classifier) uses a hyperplane in Rd as a decision bound-
ary. Formally:

g(x) =

{
1 if w′x + w0 =

∑d
i=1 wixi + w0 ≥ 0,

0 otherwise,
(3.2.2)

where x′ = (x1, . . . , xd) and w′ = (w1, . . . , wd) are in Rd and w0 ∈ R. Without loss of
generality, w can be taken with unit length, ‖w‖ = 1. The decision boundary is then a
hyperplane

H = {x ∈ Rd : w′x + w0 = 0}.
Remarks: 1. In pattern recognition theory, the classes are often coded as +1 and -1
(obtained from {0, 1} coding via transformation 2Y −1) and is this case linear discriminant
is

g(x) = sgn(w′x + w0).

2. In statistical learning (especially in connections with neural networks), the linear
discriminant is often called as perceptron .
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3.3 Risk bound via covariation matrixes

3.3.1 One-dimensional space

In one-dimensional space, a hyperplane is a point, also called a split . Hence, when
d = 1, the linear discriminant is

g(x) =

{
y′, kui x ≤ x′;
1− y′, kui x > x′. , (3.3.1)

where x′ ∈ R and y′ ∈ {0, 1}.

Let G be the set of all linear discriminants and let us investigate the risk of the best
linear discriminant

R := inf
G

R(g).

The smaller is R, the better the classes are linearly separable.

Exercise: Prove that in one-dimensional case

R = inf
x′,y′

[
I{y′=0}

(
π1F1(x

′)+π0(1−F0(x
′)
)
+I{y′=1}

(
π0F0(x

′)+π1(1−F1(x
′)
)] ≤ π1∧π0 ≤ 1

2
,

(3.3.2)
where

Fi(x) = P(X ≤ x|Y = i), πi = P(Y = i), i = 0, 1.

From (3.3.2) it follows that in general R∗ ≤ R ≤ 1
2
. Moreover, it can be shown ([1],

Lemma 4.1) that R = 1
2
iff R∗ = 1

2
.

The class-conditional distributions F0 and F1 are, in general, unknown. The next lemma
bounds R via class-conditional means and covariances that are easy to estimate:

mi = E(X|Y = i), σ2
i = Var(X|Y = i), i = 1, 0.

RecallChebysev-Cantelli’s inequality: for and random variable X with finite variance,

P(X − EX ≥ c) ≤ VarX

c2 + VarX
.

Lemma 3.3.1

R ≤
(
1 +

(m0 −m1)
2

(σ0 + σ1)2

)−1

. (3.3.3)

Proof. Without loss of generality, let m0 < m1. Let ∆1 > 0, ∆0 > 0 such that

m1 −m0 = ∆1 + ∆0.

43



Consider the discriminant

g(x) =

{
0, if x ≤ m0 + ∆0 = m1 −∆1;
1, if x > m0 + ∆0 = m1 −∆1.

Obviously

R ≤ R(g) = P(Y = 1)P(X ≤ m1 −∆1|Y = 1) + P(Y = 0)P(X > m0 + ∆0|Y = 0).

From Chebysev-Cantelli

P(X > m0 + ∆0|Y = 0) ≤ σ2
0

σ2
0 + ∆2

0

, P(X ≤ m1 −∆1|Y = 1) ≤ σ2
1

σ2
1 + ∆2

1

.

Therefore
R ≤ π1σ

2
1

σ2
1 + ∆2

1

+
(1− π1)σ

2
0

σ2
0 + ∆2

0

,

where π1 = P(Y = 1). Take now

∆0 =
(m1 −m0)σ0

σ0 + σ1

, ∆1 =
σ1

σ0

∆0,

and use the last inequality to get (3.3.3).

Hence, the bigger is
|m1 −m0|
σ0 + σ1

,

the smaller is R (and also R∗) and the best linear discriminant performs well.

Exercise: Let X ∼ U [0, 1] and

Y =

{
0, if X ∈ [1

3
, 2

3
];

1, else.

Show that R∗ = 0, R = 1
3
. Find the bound (3.3.3) and best linear classifier.
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3.3.2 Space Rd

In Rd, every linear discriminant

g(x) =

{
1 if w′x + w0 ≥ 0,

0 otherwise,

is uniquely determined by the d-dimensional vector w and scalar w0. Without loss of
generality, w can always be taken with such that ‖w‖ = 1. Again, let R := infG R(g),
where G is the set of all linear discriminants. Recall

mi = E[X|Y = i], Σi = E[(X −mi)(X −mi)
′|Y = i]

Theorem 3.3.1

R∗ ≤ R ≤ inf
w∈Rd

(
1 +

(
w′(m1 −m0)

)2

(
(w′Σ1w)

1
2 + (w′Σ0w)

1
2

)2

)−1

. (3.3.4)

Proof. Fix a w ∈ Rd of unit length and w0 ∈ R. Let g be the corresponding discrimi-
nant. The classifier g projects every x onto one-dimensional subspace spanned by w and
compares the projection with w0. Hence, one dimensional discriminant applied to the pro-
jection w′x. The class-conditional means and variances of w′X are E[w′X|Y = i] = w′mi

and Var[(w′X)|Y = i] = w′Σiw. From Lemma 3.3.1, thus

R(g) ≤
(
1 +

(
w′(m1 −m0)

)2

(
(w′Σ1w)

1
2 + (w′Σ0w)

1
2

)2

)−1

.
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Functions J and J ′. The inequality (3.3.4) says: R is small if ∃ w ∈ Rd such that
J(w) is big, where

J(w) :=
w′(m1 −m0)

(w′Σ0w)
1
2 + (w′Σ1w)

1
2

(3.3.5)

In other words: R is small if ∃ w ∈ Rd such the projected feature feature vector w′X has
class conditional means far from each other and the class-conditional variances small.

In practice, instead of J , the related quantity J ′ is often considered

J ′(w) :=
(w′(m1 −m0))

2

π0w′Σ0w + π1w′Σ1w
=

(w′(m1 −m0))
2

w′(π0Σ0 + π1Σ1)w

=
w′(m1 −m0)(m1 −m0)

′w
w′ΣW w

= (
1

π1π0

)
w′ΣBw

w′ΣW w
.

To obtain the last equation, use (3.1.4): ΣB = π1π0(m1 −m0)(m1 −m0)
′.

Note that when Σ0 = Σ1 =: Σ, then ΣW = Σ and 4J2(w) = J ′(w).

One reason for considering J ′ is that maximizing J ′ is easier then maximizing J . In-
deed maximizing J ′ is equivalent to the following problem

max
w:‖w‖=1

w′ΣBw

w′ΣW w
. (3.3.6)

and the solution of (3.3.6) is
w ∝ Σ−1

W (m1 −m0). (3.3.7)
When Σ0 = Σ1 =: Σ, then (3.3.7) (the vector that in this special case maximizes J ′ as
well as J) is

w ∝ Σ−1(m1 −m0) =: w.

3.4 When Bayes classifier is a linear discriminant?
When d = 1, then linear discriminant is the separation by one point and this happens
often.
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For d > 1, a linear Bayes discriminant is rather an exception than a rule. An important
special case is when class-conditional densities are multivariate normal. Recall that with
f0 and f1 being the class conditional densities and π := π1, the Bayes rule is

g∗(x) =

{
1 if π1f1(x) > (1− π1)f0(x),

0 else.
(3.4.1)

When
fi(x) =

1√
(2π)d|Σi|

exp[−1

2
(x−mi)

′Σ−1
i (x−mi)],

we obtain that g∗(x) = 1 iff

(x−m1)
′Σ−1

1 (x−m1)−2 ln π1+ln |Σ1| < (x−m0)
′Σ−1

0 (x−m0)−2 ln(1−π1)+ln |Σ0|. (3.4.2)

A special case, when Σ1 = Σ0 = Σ, the inequality(3.4.2) is

(x−m1)
′Σ−1(x−m1) < (x−m0)

′Σ−1(x−m0)− 2 ln
π1

1− π1

. (3.4.3)

Equivalently

−2x′Σ−1(m1 −m0) < 2 ln
π1

1− π1

+ m′
0Σ

−1m0 −m′
1Σ

−1m1

so that the Byes classifier is a linear discriminant:

g∗(x) =

{
1, when w′x + w0 > 0;
0, else,

where
w := Σ−1(m1 −m0) (3.4.4)

and

w0 = ln
π1

1− π1

+
1

2

(
m′

0Σ
−1m0 −m′

1Σ
−1m1

)
= ln

π1

1− π1

− (m0 + m1)
′

2
Σ−1(m1 −m0)

= ln
π1

1− π1

− (m0 + m1)
′

2
w.

Equivalently g∗(x) = 1 iff

w′x >
(m0 + m1)

′

2
w − ln

π1

1− π1

=
w′m0 + w′m1

2
− ln

π

1− π

or, since
w′(m1 −m0) = (m1 −m0)

′Σ−1(m1 −m0) ≥ 0,

|w′x− w′m1| < |w′x− w′m0| − 2 ln
π1

1− π1

. (3.4.5)
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In a very special case, when π = 1
2
(and Σ1 = Σ0 = Σ), we have

(m0 + m1)

2
= EX =: m

and the Bayes classifier in that case is

g∗(x) = 1 ⇔ w′x > w′m.

When the feature vector X is normally distributed in both classes and the covariation
matrixes are equal, the best classifier is a linear discriminant.

3.5 Risk bounds and ERM principle for linear classifers
Recall that in this chapter, G stands for the set of linear classifiers G and R is the risk of
best linear classifier

R = inf
g∈G

R(g).

Given a data-based classifier gn ∈ G, we are interested in its risk R(gn). In Section 2.7,
the PAC-type of inequalities, based on VC-dimension of G were for estimating R(gn) were
introduced. The set of linear classifiers G is not complex, its VC-dimension is d + 1.
Hence, the inequality (2.7.11) in that case is

P
(
sup
g∈G

|Rn(g)−R(g)| > ε
)
≤ 8(n + 1)d+1 exp[−nε2

32
] (3.5.1)

and the corresponding PAC-inequality (2.7.15) in this case is: with probability 1− δ

R(gn) ≤ Rn(gn)+2

√
8((d + 1) ln(n + 1)− ln δ + ln 8)

n
= Rn(gn)+8

√
(d + 1) ln(n + 1) + ln 8

δ

2n
.

(3.5.2)
Let us recall once again, that (3.5.2) holds for any method.

ERM-principle. For symmetric loss function, ERM-principle is minimizing the train-
ing errors. We used to denote the classifier obtained by ERM-principle as ĝn. Hence

ĝn = arg min
g∈G

Rn(g) = arg min
g∈G

n∑
i=1

I{yi 6=g(xi)}.

The PAC bound (3.5.2) holds obviously for ĝn as well, but from (2.7.13) and (2.7.14), we
get the additional bounds

ER(ĝn)−R ≤ 4

√
(d + 1) ln(n + 1) + ln 2

n

P
(
R(ĝn)−R > ε

)
≤ 8(n + 1)(d+1) exp[−nε2

128
],
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implying that (how?)
R(ĝn) → R, a.s., Rn(ĝn) → R.

Hence ĝn is a classifier with good theoretical properties. If F (x, y) is such that Bayes
classifier is linear, then ERM is a consistent rule.

The problem: ĝn is hard to find. The gradients of empirical risk function Rn(g) are
almost everywhere equal to zero, so gradient-methods will not work. Moreover, it can be
shown that finding ĝn is NP-hard. Therefore, several alternatives are used. Note that the
empirical equals to

1

n

n∑
i=1

∣∣yi − I(0,∞)(w
T xi + wo)

∣∣p, (3.5.3)

where p ≥ 1. A possibility to smooth the function is to replace the indicator I(0,∞) with
some similar smooth function σ, usually called as the sigmoid . Hence the objective is
the following differentiable function:

1

n

n∑
i=1

∣∣yi − σ(wT xi + wo)
∣∣p. (3.5.4)

Often the logistic function

σ(t) =
exp[t]

1 + exp[t]

is used. Then (3.5.3) is
1

n

n∑
i=1

∣∣yi − exp[wT xi + wo]

1 + exp[wT xi + wo]

∣∣p.

If p = 2, we get the logistic regression problem. About logistic discrimination read Section
3.6.2.

Fingering. A way to restrict the search space is to consider only those hyperplanes
that go through d sample points. Every such a hyperplane defines two classifiers. If X
is absolutely continuous, then in every hyperplane, there are at most d sample points,
hence in this case

(
n
d

)
hyperplanes (much less than the set of all hyperplanes) should be

considered, amongst them the one with smaller risk is chosen. This method is called
fingering . The classifier gn obtained in this way, does not minimize empirical risk, since
the points on the hyperplane are not distinguished. However, since (for continuous X) in
every hyperplane, there are d points, clearly

Rn(gn)−Rn(ĝn) ≤ d

n
,
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so that for big n the difference is small and all the convergences above hold as well.

3.6 Training linear classifier: some classical methods
Despite the fact that Bayes classifier is usually not linear, due to its simplicity, they are
still often used. We know that a good way to train a linear classifier is ERM-principle,
but this is hard to apply. In the following, we shall consider some most popular methods
of choosing a linear classifier from the set G of all linear classifiers using data.

3.6.1 Linear regression

The idea: approximate x 7→ p(1|x) with some linear function f(x) := w′x + a, where
w ∈ Rd, a ∈ R. Hence, from (3.2.1), we get the classifier

g(x) =

{
1 when w′x + a ≥ 0.5,

0 when w′x + a < 0.5.
(3.6.1)

Taking wo := a− 0.5, we get that (3.6.1) is linear classifier in the form (3.3.2):

g(x) = 1 ⇔ w′x + wo > 0, elsewhere g(x) = 0.

Ordinary least squares: Find ŵ and â by solving

min
w,a

1

n

n∑
i=1

(yi − w′xi − a)2. (3.6.2)
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With ŵ and â construct the classifier gn as in (3.6.1).

Some properties. The OLS-problem is the empirical (data-based) version of the fol-
lowing optimization problem:

min
w,a

E
(
Y − (w′X + a)

)2
. (3.6.3)

Let us briefly study the properties of the corresponding classifier g [as in (3.6.1), where
w and a are the solutions of (3.6.3)]. If g has good properties, then it is natural to hope
that then the corresponding empirical classifier gn has good properties as well, at least
when n is sufficiently big.
Note that the following propositions hold for arbitrary F (x, y), hence they also hold for
empirical measure Fn(x, y), thus for sum (3.6.1).

Proposition 3.6.1 Let f : Rd → R be an arbitrary function. Then

E
(
Y − f(X)

)2
= E

(
Y − p(1|X)

)2
+ E

(
p(1|X)− f(X)

)2
.

Exercise: Prove Proposition 3.6.1.

Hence, for any class of functions F , minimizing E
(
Y − f(X)

)2 is the same as minimizing
E

(
p(1|X)− f(X)

)2. In particular, the following minimization problems are equivalent:

min
w,a

E
(
p(1|X)− (w′X + a)

)2 ⇔ min
w,a

E
(
Y − (w′X + a)

)2 (3.6.4)

and the minimizer f(x) = w′x + a is then, in the sense of the least squares, the best
approximation of p(1|x).

Proposition 3.6.2 Let γ, β ∈ R. Let w∗ and a∗ be the solutions of (3.6.3). Then γw∗

and γa∗ + β are the solutions of the following optimization problem

min
w,a

(
(γY + β)− (w′X + a)

)2
= min

w,a

(
Ỹ − (w′X + a)

)2
, (3.6.5)

where Ỹ = γY + β

Exercise: Prove Proposition 3.6.2.

From Proposition 3.6.2, it follows that the classifier g remains unchanged when decod-
ing the labels by changing 0 ↔ 1, i.e. γ = −1 and β = 1. Indeed, let w̃ := γw
and ã := γa + β be the solutions of (3.6.5) and let f̃ := w̃′x + ã be the correspond-
ing regression function. Now, with γ = −1 and β = 1, f̃(x) = 1 − f(x), where
f(x) = w′x+ a is the original regression function and, therefore f(x) > 0.5 iff f̃(x) < 0.5.
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Hence, the classifier does not change (unless, for those x that satisfy f(x) = 0.5) when in
the picture above, the red dots are coded as one and blue dots as zero.

Many classes. Recall that by changing the labels, the regression functions f(x) and
f̃(x) are such that f̃(x) + f(x) = 1, Thus,

f(x) > 0.5 ⇔ f(x) > f̃(x).

This is in full correspondence with Bayesian decision theory: f(x) approximates p(1|x) and
f̃(x) approximates p(0|x) (after decoding), and to be consistent with Bayesian decision
theory, we have to classify x into the class with bigger probability.
The genralization for more than two classes is now obvious: for any class j = 0, . . . , k−1,
relabel the data so that ỹi = 1 iff yi = j, otherwise yi = 0, find the corresponding
regression function fj(x) by solving (3.6.1), then define the classifier as follows

gn(x) = arg max
i=0,...,k−1

fi(x). (3.6.6)

A problem for more than two classes might be "masking".
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Minimizing (3.6.3). Recall (3.6.3):

min
w,a

E
(
Y − (w′X + a)

)2
,

Taking the partial derivatives, setting them to zero, we get the system of equation for
finding the solutions of (3.6.3):

E(XX ′)w + aEX = E(XY )

w′EX + a = EY.

Thus
a = EY − w′EX

and
E(XX ′)w + EY EX − EX(EX)′w = E(XY ). (3.6.7)

since E(XX ′)− EX(EX)′ = ΣX , we get

ΣXw = E(XY )− EY EX, (3.6.8)

so that
w = Σ−1

X

(
E(XY )− EY EX

)
.

Exercise: Let there be k-classes. Define Yi := I{i}(Y ), i.e. Yi = 1 iff Y = i. Let

(wi, ai) = arg min
w,a

E
(
Yi − (w′X + a)

)2
.
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Show that
k−1∑
i=0

wi = 0,
k−1∑
i=0

ai = 1. (3.6.9)

(Show that without loss of generality, you can assume EX = 0).

Two classes. The solutions

w = Σ−1
X

(
E(XY )− EY EX

)
, a = EY − w′EX

hold for any Y . For binary classification, these solutions can be written as follows. Recall
that mi := E[X|Y = i], i = 0, 1 and

m := EX = π1m1 + π0m0.

Then
E(XY )− EY EX = π1m1 − π1m = π0π1(m1 −m0)

so that
w = π0π1Σ

−1
X (m1 −m0). (3.6.10)

Recall the decomposition

ΣX = ΣW + π0π1(m1 −m0)(m1 −m0)
′.

Plugging this into (3.6.8), after some algebra, we get

w = αΣ−1
W (m1 −m0), a = π1 − w′m, (3.6.11)

where

α = π0π1

(
1− (m1 −m0)

′w
)

= π0π1

(
1− π0π1(m1 −m0)

′Σ−1(m1 −m0)
)
.

It can be shown that α > 0. Hence, up to a positive constant, the solution w is the same
as the one minimizing J ′.

Relation with linear Bayes classifier. Suppose, for moment that class conditional
distributions of X are multivariate normal with equal covariances: Σ1 = Σ0 = Σ. The
Bayes classifier in that case is

g∗(x) = 1 ⇔ w′x + w0 ≥ 0,

where
w = Σ−1(m1 −m0) and w0 = ln

π1

π0

− (m1 + m0)
′

2
w.

Then w = αw, α > 0, so that the classifier g(x) in this case is

g(x) = 1 ⇔ αw′x + a− 0.5 ≥ 0 ⇔ w′x + α−1(π1 − αw′m− 0.5) ≥ 0. (3.6.12)

When π1 = π0 = 0.5, both rules are the same, hence g is Bayes rule, when π1 6= π0, then
the vectors w are the same, but the constants are different.
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How good is g? Recall that g is a linear classifier such that g(x) = 1 iff w′x + a > 0.5,
when w and a are solutions of (3.6.3). We saw that in a very special case, g is the best
possible – Bayes classifier, but in general it might not be even the best from all linear
classifiers (even when class conditional distributions are multivariate normal and Bayes
classifier is linear) so that in general R(g)− R > 0, where R = infg∈G R(g) with G being
the class of linear classifiers. How big can the difference R(g)−R be? It depends on the
distribution of F (x, y) and can be very big, namely

sup
(
R(g)−R

)
= 1, (3.6.13)

where supremum is taken over all possible distributions F (x, y). The proof is the following
example.

Exercise: Let

P((X, Y ) = (−m, 1)) = P((X,Y ) = (m, 0)) = ε,

P((X, Y ) = (1, 1)) = P((X,Y ) = (−1, 0)) =
1

2
− ε, m > 0.

Find R∗ and R. Prove that

w =
1− 2ε(1 + m)

4(m2ε + (1
2
− ε))

, a = 0.5.

Show that for every ε there exists m such that w < 0. Prove (3.6.13).

The classifier gn. Replacing the theoretical expectations with sample averages, we get
the solutions of

min
w,a

1

n

n∑
i=1

(yi − w′xi − a)2.

as follows:

ŵ = π̂0π̂1Σ̂
−1
X (m̂1 − m̂0) = α̂Σ̂−1

W (m̂1 − m̂0) = (α̂n)S−1
W (m̂1 − m̂0)

â = π̂1 − ŵ′m̂,

α̂ = π̂1π̂0

(
1− π̂1π̂0(m̂1 − m̂0)

′Σ̂−1
W (m̂1 − m̂0)

1 + π̂1π̂0(m̂1 − m̂0)′Σ̂−1
W (m̂1 − m̂0)

)
.

Of course, with xi = (xi1, . . . , xid)
′ i = 1, . . . , n and

Z =




x11 · · · x1d 1
x21 · · · x2d 1
· · · · · · · · · · · ·
xn1 · · · xnd 1


 , y =




y1

y2

· · ·
yn


 , β =




w1

· · ·
wd

a
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we get the solution in usual form
(

ŵ
â

)
= (Z′Z)−1Z′y.

When n grows, then

m̂i → mi a.s., Σ̂−1
W → Σ−1

W a.s., π̂i → πi a.s.

so that
ŵ → w, a.s., â → a, a.s..

When P(w′X + a = 0.5) = 0 (e.g. X is absolutely continuous), then these convergences
imply (just dominated convergence)

R(gn) → R(g), a.s.. (3.6.14)

Hence, for many cases R(gn) → R(g), but, as we saw, the limit R(g) can be rather bad.
However in a very special case, when X has multivariate normal distribution in both
classes and πi = 0.5, then (3.6.14) implies that gn is consistent.

To summarize: Depending on F (x, y), the classifier based on linear regression can be-
have very badly even for very big n.

References: About linear regression read [8] (sec 4.2.4 and 4.3.4), [9] (sec 4.6), [6] (sec
5.8), [7] (sec 4.2 and Ch 3).

3.6.2 Logistic discrimination (regression)

In logistic discrimination, instead the conditional probabilities , the log-ratio or log-odds:

ln
p(1|x)

p(0|x)
.

is approximated by some linear function. Suppose, for a moment that

ln
p(1|x)

p(0|x)
= w′x + wo. (3.6.15)

Since p(0|x) = 1− p(1|x) we get that under (3.6.15)

p(1|x)

1− p(1|x)
= exp[w′x + wo],

so that

p(1|x) =
exp[w′x + wo]

1 + exp[w′x + wo]
, p(0|x) =

1

1 + exp[w′x + wo]
.
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Hence, in logistic discrimination the parameters (w′, wo)
′ ∈ Rd+1 are searched so that the

functions

η1(x) :=
exp[w′x + wo]

1 + exp[w′x + wo]
, η0(x) :=

1

1 + exp[w′x + wo]

(in a sense) are the best fits to the conditional probabilities p(1|x) and p(0|x). These
functions are more realistic than linear: always positive and they sum up to one. After
finding the functions η0 and η1, the classifier is, obviously, as follows

g(x) =

{
1 if η1(x) ≥ η0(x),

0 else.
(3.6.16)

Since η1(x) = η0(x) iff

ln
η1(x)

η0(x)
= w′x + wo = 0,

we see that (3.6.16) is a linear discriminant:

g(x) =

{
1 if w′x + wo ≥ 0,

0 else.
(3.6.17)

Note that there is no difference, whether we model linearly the ratio p(1|x)
p(0|x)

or p(0|x)
p(1|x)

.

Estimating the parameters: conditional max-likelihood. Estimating the param-
eters w and wo is done with maximum likelihood estimation which entails finding the set
of parameters for which the probability of the observed data is greatest. The maximum
likelihood equation is derived from the probability distribution of the labels, only. Since
our sample is iid, then given features x1, . . . , xn, the (conditional) probability to obtain
the classes y1, . . . , yn is

L :=
∏

i:yi=1

p(1|xi)
∏

i:yi=0

p(0|xi).

Replacing p(i|x) with the functions ηi(x; w, wo), we get conditional likelihood function:

L(w,wo) :=
∏

i:yi=1

η1(xi; w, wo)
∏

i:yi=0

η0(xi; w, wo).
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The aim is to find the parameters w, wo (equivalently, the functions ηi) so that L(w, wo)
is maximal. For that the conditional log-likelihood function is used:

l(w,wo) := ln
( ∏

i:yi=1

η1(xi; w, wo)
∏

i:yi=0

η0(xi; w, wo)
)

=
∑

i:yi=1

ln η1(xi; w,wo) +
∑

i:yi=0

ln η0(xi; w, wo)

=
∑

i:yi=1

(w′xi + wo)−
n∑

i=1

ln(1 + exp[w′xi + wo])

=
n∑

i=1

(
yi(w

′xi + wo)− ln(1 + exp[w′xi + wo])
)
.

To maximize l(w, wo), the vector of partial derivatives – gradient – is set to zero. In
statistics, the gradient of log-likelihood function is called score and in our case it is as
follows:




∂l(w,wo)
∂wo

∂l(w,wo)
∂w1· · ·

∂l(w,wo)
∂wd


 =




∑n
i=1

(
yi − exp[w′xi+wo]

1+exp[w′xi+wo]

)

∑n
i=1 x1

i

(
yi − exp[w′xi+wo]

1+exp[w′xi+wo]

)

· · ·∑n
i=1 xd

i

(
yi − exp[w′xi+wo]

1+exp[w′xi+wo]

)




=
n∑

i=1




yi − η1(xi; w, wo)
x1

i

(
yi − η1(xi; w, wo)

)
· · ·

xd
i

(
yi − η1(xi; w, wo)

)


 .

We end up with a system with d+1 non-linear equation that are solved via several numer-
ical methods. In the book [7], you can find an algorithm for solving the set of equations
via Newton-Raphson method.

With obtained estimates ŵ and ŵo the classifier, as in (3.6.17), is constructed:

gn(x) =

{
1 if ŵ′x + ŵo ≥ 0,

0 else.

More than two classes. When the number of classes are bigger than two, the proba-
bilities are modeled as follows

p(i|x) =
exp[w′

ix + wi0]

1 +
∑k−2

i=0 exp[w′
ix + wi0]

, i = 0, . . . , k − 2

p(k − 1|x) =
1

1 +
∑k−2

i=0 exp[w′
ix + wi0]

. (3.6.18)

Hence, for k classes, there are (k−1)(d+1) parameters, all estimated via conditional like-
lihood method. With these estimates ŵi, ŵi0, i = 0, . . . , k−2 the conditional probabilities

58



are estimated as follows

p̂(i|x) =
exp[ŵ′

ix + ŵi0]

1 +
∑k−2

i=0 exp[ŵ′
ix + ŵi0]

, i = 0, . . . , k − 2

p̂(k − 1|x) =
1

1 +
∑k−2

i=0 exp[ŵ′
ix + ŵi0]

(3.6.19)

and the classifier is
gn(x) = arg max

0=1,...,k−1
p̂(i|x).

NB! The conditional likelihood method described here does not assume anything about
F (x).

On the consistency of (conditional) max-likelihood classifier

Logistic regression is classifying with the help of (conditional) max-likelihood method:
the probability p(1|x) is assumed to belong to a class (model) P . Hence P is a subset of
functions

η : Rd → [0, 1].

and the data-based estimate of it, let it be η̂n is picked via maximum likelihood method.
With η̂n, the classifier gn, as usually, is the following: gn(x) = 1 iff η̂n(x) ≥ 0.5.

Is such a method consistent? It depends:

• on the complexity of the model;

• on the correctness of the model, i.e. whether p(1|x) ∈ P .
Those two things are related: the bigger (complex) the model, the bigger the chance that
it is correct. If the model is correct, then Bayes classifier belongs to the set

G := {g(x) = I{η(x)≥0.5} : η ∈ P}
and the approximation error is zero. If the correct model in not too complex, it is plausible
to hope that the estimation error converges to zero as well.

Correct model. Suppose the model is correct, i.e. p(1|x) ∈ P . The consistency of the
maximum likelihood method depends now on the complexity of P . Note that we cannot
any more measure the complexity of the set of corresponding classifiers G, because we
choose amongst the functions in P . A very complex model can give a relatively simple
G. Theorem 15.2 in [1] gives sufficient conditions in terms of metric entropy of P that
guarantee the consistency of maximum likelihood classification (note: the consistency of
maximum likelihood estimator is something else). It can be shown ([1], 15.3), that

P :=
{ exp[w′x + wo]

1 + exp[w′x + wo]
: w ∈ Rd, wo ∈ R

}
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satisfies the assumptions of Theorem 15.2. Thus if (3.6.15) holds, then the classifier obtain
by logistic regression is consistent, i.e. R(gn) → R∗ a.s.

Exercise: Prove that (3.6.15) holds, when class-conditional densities are

fi(x) = ciu(x) exp[−1

2
(x−mi)

′Σ(x−mi)].

Hence, when class-conditional distributions are multivariate normal with the same covari-
ance, then logistic regression gives consistent estimators.

Incorrect model. If the model is incorrect, then typically approximation error is bigger
than zero, hence consistency is not possible. In this case we ask: does the convergence
R(gn) → R, a.s. hold, where R = infG R(g)? It turns out that answer might be no even
when the class P is finite. The reason is the following. Let, for any η ∈ P , ln(η) be the
conditional log-likelihood of random sample (X1, Y1), . . . , (Xn, Yn):

ln(η) =
n∑

i=1

(
ln η(Xi)I{1}(Yi) + ln(1− η(Xi))I{0}(Yi)

)
.

From SLLN, it follows that for every η

1

n
ln(η) → E

[
p(1|X) ln η(X) +

(
1− p(1|X)

)
ln(1− η(X))

]
=: l(η) a.s..

If P is finite then from the convergence above, it follows that a.s.

η̂n := arg max
η∈P

ln(η) = arg max
η∈P

l(η) =: η′ eventually. (3.6.20)

If the model is correct, i.e. p(1|x) ∈ P , then η′ = p(1|x) and that is the consistency of
maximum-likelihood estimator. Generally, η′ is the best in log-likelihood sense from the
class P . Unfortunately, the corresponding classifier g′(x) = I{η′(x)≥0.5} is not always the
best classifier in risk (error-probability) sense from G. The following simple exercise gives
an easy counterexample.

Exercise: Let d = 1 and

P(X = 0, Y = 0) = P(X = 1, Y = 0) =
2

9
, P(X = 0, Y = 1) =

1

9
, P(X = 1, Y = 1) =

4

9
.

• Find R∗ and g∗.

• Suppose P = {η1, η2}, where η1(x) ≡ 0.45, η2(x) ≡ 0.95. Find the corresponding
classifiers g1, g2, R(g1), R(g2) and R.

• Find p(1|x), l(η) and η′.

• Find
arg min

i=1,2
E

(
Y − ηi(X)

)2
.
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Inconsistency of logistic regression: a counterexample. The counterexample of
linear regression also shows the inconsistency of logistic regression. Let us recall the
example: d = 1,

p(1| −m) = p(1|1) = p(0|m) = p(0| − 1) = 1

and

P(X = −m) = ε, P(X = −1) =
1

2
− ε, P(X = m) = ε, P(X = 1) =

1

2
− ε,

where ε < 1
4
. The best linear – one point – classifier is any of them:

gt(x) = 1 ⇔ x ≥ t,

where t ∈ (−1, 1]. Thus R = 2ε. Consider the set

P =
{ exp[wx + a]

1 + exp[wx + a]
: w, a ∈ R

}
.

Hence,every η is in the form

η(x) =
exp[wx + a]

1 + exp[wx + a]
.

The conditional log-likelihood is, thus,

l(η) = l(w, a) = ln η(−m)ε + ln(1− η(−1))(0.5− ε) + ln η(1)(0.5− ε) + ln(1− η(m))ε

=
(− wm + a− ln(1 + exp[−wm + a])

)
ε

− ln(1 + exp[−w + a])(0.5− ε)

+
(
w + a− ln(1 + exp[w + a])

)
(0.5− ε)

− ln(1 + exp[wm + a])ε

∂l

∂a
=

(
1− 1

1 + exp[wm− a]

)
ε− 1

1 + exp[w − a]
(0.5− ε)

+
(
1− exp[w + a]

1 + exp[w + a]

)
(0.5− ε)− exp[wm + a]

1 + exp[wm + a]
ε.

Then

∂l

∂a
|a=0 =

(
1− 1

1 + exp[wm]

)
ε− ( 1

1 + exp[w]

)
(0.5− ε)

+
(
1− exp[w]

1 + exp[w]

)
(0.5− ε)− exp[wm]

1 + exp[wm]
ε = 0.

Hence, the optimal a = 0 and we have to minimize the fuction

l(w) :=: l(w, 0) =
(− wm− ln(1 + exp[−wm])

)
ε− ln(1 + exp[−w])(0.5− ε)

+
(
w − ln(1 + exp[w])

)
(0.5− ε)− ln(1 + exp[wm])ε.
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The equation l′(w) = 0 is

ε
(
−m +

m exp[−wm]

1 + exp[−mw]
− m exp[mw]

1 + exp[mw]

)
+ (0.5− ε)

( exp[−w]

1 + exp[−w]
+ 1− exp[w]

1 + exp[w]

)
=

ε
(
−m +

m

1 + exp[mw]
− m exp[mw]

1 + exp[mw]

)
+ (0.5− ε)

(
1 +

1− exp[w]

1 + exp[w]

)

ε
(
− 2m exp[wm]

1 + exp[mw]

)
+ (0.5− ε)

( 2

1 + exp[w]

)
= 0,

so that l′(w) = 0 is equivalent to

(0.5− ε) =
εm exp[mw]

1 + exp[mw]
(1 + exp[w]) (3.6.21)

When m is big enough, then the solution of (3.6.21) is strictly negative. For example,
if m = 1000 and ε = 0.1, then the solution of (3.6.21), say w∗, is w∗ ≈ −0.0037. It is
important that w∗ is strictly negative. Now

η′(x) =
exp[w∗x]

1 + exp[w∗x]

and the corresponding rule is g′(x) = 1 iff x < 0 and the corresponding risk is R′ = 1−2ε.

References: About logistic discrimination read also [8] (sec 4.4), [9] (sec 10.7, 10.8), [7]
(sec 4.4.).
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3.6.3 (Fisher) linear discriminant analysis (LDA)

Recall that for any w ∈ Rd, the class-conditional means and variances of w′X are

E[w′X|Y = i] = w′mi, Var[(w′X)|Y = i] = w′Σiw.

Also recall that

Var(w′X) = E(Var[w′X|Y ]) + Var(E[w′X|Y ]) = w′ΣW w + w′ΣBw.

LDA aims to solve the following maximization problem:

max
w:‖w‖=1

w′ΣBw

w′ΣW w
(3.6.22)

based on data. With the solution w (and some constant w0), a linear classifier is then
constructed. We know that (3.6.22) is equivalent to

max
w:‖w‖=1

J ′(w), J ′(w) =
(w′(m1 −m0))

2

w′ΣW w

and the solution is
w ∝ Σ−1

W (m1 −m0). (3.6.23)

Since we are interested in the hyperplane spanned by w, we can take the solution as

w = Σ−1
W (m1 −m0). (3.6.24)

Theoretical justification:

1. The solution w is such that projecting the feature vector onto the sub-space spanned
by w, the class-conditional means w′mi were possibly far from each other and the
weighted sum of conditional variances w′Σ1wπ1+w′Σ0wπ0 = w′ΣW w were relatively
small.

2. In a special case, when Σ1 = Σ0, maximizing J ′ is equivalent to maximizing

J(w) =
w′(m1 −m0)

(w′Σ0w)
1
2 + (w′Σ1w)

1
2

.

According to Lemma 3.3.1, this equals to minimizing upper bound to R.

3. If class-conditional distributions are normal and Σ1 = Σ0, then our solution (3.6.24)
is the one that defines the Bayes classifier.
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Data-based estimates. Recall the sample-based estimates:

Σ̂X :=
1

n

n∑
j=1

(xj − m̂)(xj − m̂)′, m̂ :=
1

n

n∑
j=1

xj,

Σ̂i :=
1

ni

∑
j:yj=i

(xj − m̂i)(xj − m̂i)
′, π̂i :=

ni

n
, m̂i =

1

ni

∑
j:yj=i

xj,

Si :=
∑

j:yj=i

(xj − m̂i)(xj − m̂i)
′, SW :=

k−1∑
i=0

Si, SB :=
k−1∑
i=0

ni(m̂i −m)(m̂i −m)′.

Replacing the unknown ΣW and (m1 −m0) by the corresponding estimates, we get the
empirical version of the solution (3.6.24):

ŵ = Σ̂−1
W (m̂1 − m̂0) = nS−1

W (m̂1 − m̂0). (3.6.25)

The vector ŵ maximizes
Ĵ(w) :=

w′SBw

w′SW w

and since (recall (1.2.4))

SB =
n1n0

n
(m̂1 − m̂0)(m̂1 − m̂0)

′,

we have that maximizing Ĵ(w) equals to maximizing:

w′(m̂1 − m̂0)(m̂1 − m̂0)
′w

w′SW w
=

w′(m̂1 − m̂0)(m̂1 − m̂0)
′w

w′(S0 + S1)w
=

(
w′(m1 −m0)

)2

s2
0 + s2

1

, (3.6.26)

where
s2

i := w′Siw =
∑

j:yj=i

(w′xj − w′m̂i)
2, i = 0, 1.

Hence, for any w ∈ Rd such that ‖w‖ = 1, we consider one-dimensional sample

(w′x1, y1), . . . , (w
′xn, yn).

LDA looks for w such that the objects from different classes were well separated: most
of the elements with label 0 in one side and the elements with label 1 in other side. If
such a w exists, then classifying one-dimensional sample is usually easy. The separation
is measured:

1. via the difference of means |w′m̂0 − w′m̂1| (has to be large)

2. via the sum of scatters s2
1 + s2

0 (has to be small).
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These two considerations give (3.6.26) (this is the empirical version of theoretical justifi-
cation argument 1).

Typically, LDA does not specify how to classify the one dimensional data

(ŵ′x1, y1), . . . , (ŵ
′xn, yn) (3.6.27)

after the original sample has been projected. If one-dimensional classification is linear (one
point), then the overall classification is linear as well. Recall, that when class-conditional
distributions of X are multivariate normal with equal covariance matrix Σ, then the Bayes
rule (recall (3.6.3)) is: g∗(x) = 1 iff

|w′x− w′m1| < |w′x− w′m0| − 2 ln
π1

1− π1

,

where w = Σ−1(m1 − m0), i.e. w is the same as (3.6.24) (since in this particular case
ΣW = Σ). If it is reasonable to believe that this is the case, then the final rule could be
as follows: gn(x) = 1 iff

|ŵ′x− ŵ′m̂1| < |ŵ′x− ŵ′m̂0| − 2 ln
π̂1

π̂0

, (3.6.28)

Note also that ŵ is proportional to the solution of linear regression. Hence, when classify-
ing linearly using LDA, the theoretical properties of the classifier gn might be very similar
to that of obtained by linear regression. Thus, without additional knowledge about the
distribution F (x, y), a linear classifier based on LDA can behave very badly for arbitrary
big n.

In general, finding one-dimensional sample (3.6.27) can be considered as an interme-
diate step in classification for reducing the dimensionality. After it has been done, some
other methods that could perhaps not used in d-dimensional space, can then applied. The
authors of [7] suggest to use ERM-principle for classifying (3.6.27). But no matter how
sophisticated classifier is used for (3.6.27), the final classifier in Rd is still quite limited
(see picture below).

References: About LDA (especially for many-classes) read [7, 8] (sec 4.3 in both), [6]
(sec 4.11), [9] (sec 6.6.).
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Chapter 4

Support vector machines

4.1 Preliminaries: Lagrange’s multipliers
Saddle-point. Let L(x, α) be an arbitrary function, and let

f̃(x) := max
α

L(x, α), θ(α) := min
x

L(x, α).

Exercise:

1. Prove that

min
x

max
α

L(x, α) = min
x

f̃(x) ≥ max
α

θ(α) = max
α

min
x

L(x, α).

2. Let
f̃(x∗) = min

x
f̃(x), θ(α∗) = max

α
θ(α). (4.1.1)

Prove that f̃(x∗) = θ(α∗) – this is called strong duality – implies that (x∗, α∗) is
a saddle point :

L(x, α∗) ≥ L(x∗, α∗) ≥ L(x∗, α), ∀x, α

and
f̃(x∗) = L(x∗, α∗) = θ(α∗). (4.1.2)

3. Prove that if (x∗, α∗) is a saddle point, then (4.1.2) and (4.1.1) hold.

Primal and dual problem. Consider the (primal) problem :

minx∈Rd f(x) (4.1.3)
subject to g(x) ≤ 0,

where
f : Rd → R, g : Rd → Rm.
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Here g(x) ≤ 0 means gi(x) ≤ 0 for all i = 1, . . . , m.

Lagrangian

L(x, α) = f(x) + α′g(x) = f(x) +
m∑

i=1

αigi(x),

where α′ = (α1, . . . αm) ∈ [0,∞)m. It is easy to see (check!) that the problem (4.1.3) is
equivalent to the following problem

min
x∈Rd

max
α≥0

L(x, α) = min
x∈Rd

f̃(x), (4.1.4)

where
f̃(x) := max

α≥0
L(x, α).

The equivalence means: if x∗ is the solution of (4.1.4), it is also the solution of the primal
problem and f(x∗) = f̃(x∗).

Change the order of maximization and minimization to get the dual problem :

max
α≥0

min
x∈Rd

L(x, α) = max
α≥0

θ(α), (4.1.5)

where
θ(α) := min

x∈Rd
L(x, α).

Let x∗ and α∗ be the solutions of primal and dual problems, respectively. Thus

f̃(x∗) ≥ θ(α∗).

If the inequality above is equality (strong duality), then (x∗, α∗) is a saddle point and
(4.1.2) holds:

f̃(x∗) = f(x∗) + α∗′g(x∗) = L(x∗, α∗) = θ(α∗) = min
x

L(x, α∗). (4.1.6)

From the last equality we see that then x∗ = arg minx L(x, α∗).

Therefore, under strong duality, the solution of primal problem x∗ can be found via
the dual problem as follows:

• For every α ≥ 0 find xα such that L(xα, α) = minx L(x, α) = θ(α).

• Solve dual problem.

• With the solution α∗ of dual problem, find corresponding xα∗ . This is the solution
of primal problem.
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Solving dual problem is usually easier as the original one, because dual problem is always
concave, even if f and g are neither concave nor convex.

Recall that any solution x∗ of primal problem is a minimizer of f̃ and f(x∗) = f̃(x∗).
From (4.1.6), it follows that under strong duality

f(x∗) = f̃(x∗) = f(x∗) + α∗′g(x∗) = L(x∗, α∗)

so that α∗′g(x∗) = 0. Since g(x∗) ≤ 0 and α∗ ≥ 0, then α∗′g(x∗) = 0 iff

α∗i gi(x
∗) = 0 i = 1, . . . ,m.

Hence when strong duality holds, i.e. f̃(x∗) = θ(α∗) then the pair of solutions (α∗, x∗)
satisfies so-called KKT (Karush-Kuhn-Tucker) (optimality) conditions:

α∗i ≥ 0, i = 1, . . . , m

gi(x
∗) ≤ 0, i = 1, . . . , m

α∗i gi(x
∗) = 0, i = 1, . . . ,m

Equality constraints. Some of the constraints could be equalities, hence the primal
problem

min
x∈Rd

f(x) (4.1.7)

subject to g(x) ≤ 0,

e(x) = 0

where
f : Rd → R, g : Rd → Rm, e : Rd → Rl

and e(x) = 0 means ei(x) = 0 for every i = 1, . . . , l.

Let us reformulate

min
x∈Rd

f(x) (4.1.8)

subject to g(x) ≤ 0,

e(x) ≤ 0

−e(x) ≤ 0.

Corresponding Lagrangian:

L(x, α, β+, β−) = f(x) + α′g(x)− β′+e(x) + β′−e(x) = f(x) + α′g(x) + (β− − β+)′e(x).

Define β := β− − β+ (can be negative), we get Lagrangian as

L(x, α, β) = f(x) + α′g(x) + β′e(x), where α ∈ [0,∞)m, β ∈ Rl.
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Dual problem:

max
α≥0,β

θ(α, β), (4.1.9)

where θ(α, β) := minx∈Rd L(x, α, β). Note that in (4.1.9) the search space is nonnegative
α’s and all β’s.

When strong duality holds? A sufficient condition is so called Slater’s condition :

• functions f and gi are convex and ei affine;

• there exists xo so that gi(xo) < 0 for every i = 1, . . . , m and ei(xo) = 0 for every
i = 1, . . . , l.

Quadratic programming:

min
x

1

2
x′Kx + c′x (4.1.10)

subject to Ax + d ≤ 0

Bx + e = 0

If K is positive semi-definite (symmetric) matrix, then this is a convex optimization prob-
lem. It can be shown that when the problem is feasible (i.e. the solution exists), then in
this case the strong duality holds ([10], Thm 5.20). Hence, Lagrange method can be used
to solve it.

Example. Consider the problem

min
x

1

2
x′Kx + c′x (4.1.11)

subject to Ax + d ≤ 0,

where K is positive definite, so that K−1 exists. Lagrangian:

L(x, α) =
1

2
x′Kx + c′x + α′(Ax + d).

Now
∇xL(x, α) = 0 ⇔ Kx + A′α + c = 0 ⇒ xα = −K−1(A′α + c).

Plugging xα into Lagrangian, we obtain

1

2

(
A′α + c)′K−1KK−1(A′α + c)− c′K−1(A′α + c) + α′

(− AK−1(A′α + c) + d
)

=

1

2
α′AK−1A′α +

1

2
c′K−1c + α′AK−1c− c′K−1A′α− c′K−1c− α′AK−1A′α− α′AK−1c + α′d =

− 1

2
α′AK−1A′α− 1

2
c′K−1c− c′AK−1A′α + d′α.
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Hence the dual problem is

max
α
−1

2
α′AK−1A′α + [d′ − c′K−1A′]α (4.1.12)

subject to α ≥ 0,

The dual problem can be solved by gradient method or by matlab. With α∗ being the
solution of dual problem, the solution of primal problem is

x∗ = −K−1(A′α∗ + c).

Exercise: Consider (4.1.10) where K is positive definite, so that K−1 exists. Show the
the dual problem is

max
α
−1

2
(α′A + β′B)K−1(A′α + B′β) + [d′ − c′K−1A′]α + [e′ − c′K−1B′]β − 1

2
c′K−1c

(4.1.13)
subject to β, α ≥ 0

and with (α∗, β∗) being the solutions of dual problem, the solution of primal is

x∗ = −K−1(A′α∗ + B′β∗ + c).

4.2 Support vector classification
Assumption: In this chapter we consider the case k = 2 and classes are labeled as -1 and
+1. The loss-function is symmetric. Every linear classifier is thus in the form

g(x) = sgn(w′x + w0), where sgn(x) =

{
1, if x ≥ 0;
−1, if x < 0.

4.2.1 Linearly separable sample – hard margin

Suppose that the training set is linearly separable: there exists at least one hyperplane
that classifies correctly (training error is zero). In other words, there exists a w ∈ Rd and
wo such that for every pair (xi, yi)

yi(w
′xi + wo) ≥ 0, i = 1, . . . , n. (4.2.1)

Every such hyperplane is called separating hyperplane. When ‖w‖ = 1 then the left side of
(4.2.1) is the distance of xi from the hyperplane. This distance is called geometrical margin
of (xi, yi). Typically there are more than one separating hyperplanes and the idea of large
margin methods is to choose the one that in some sense lies in the "middle" of different
subsamples (a subsample is the elements of the sample with the same labels). In other
words, amongst the separating hyperplanes choose the one with largest distance to the
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nearest point. This distance is called geometrical margin of the sample . Hence, if
w, wo correspond to a separating hyperplane and ‖w‖ = 1, the geometrical margin of
sample is

min
i=1,...,n

yi(w
′xi + wo).

Hence, the separating hyperplane with maximal margin can be found by the following
problem

max
γ,w,wo

γ (4.2.2)

subject to yi(w
′xi + wo) ≥ γ, i = 1, . . . , n

‖w‖ = 1.

Here γ is margin. It is not hard to see that (4.2.2) is equivalent to the following problem:

max
w,wo

1

‖w‖ (4.2.3)

subject to yi(w
′xi + wo) ≥ 1, i = 1, . . . , n.

Exercise: Let (w, wo) be the solution of (4.2.2) and (w∗, w∗
o) be the solution of (4.2.3).

Prove that they define the same hyperplane: w′x + wo = 0 iff w∗′x + w∗
o = 0. Show that

the margin of this hyperplane is ‖w∗‖−1
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The problem (4.2.3) is equivalent to

min
w,wo

1

2
‖w‖2 (4.2.4)

subject to yi(w
′xi + wo) ≥ 1, i = 1, . . . , n.

Exercise: Show that the problem (4.2.4) is a quadrating programming problem just as
(4.1.10), but the matrix K is positively semidefinite but not positively definite and K−1

is not unique.

However, (4.2.4) can be solved with Lagrangian method just like quadratic program-
ming. Slater’s condition holds (the functions are convex and the inequalities can be strict
for some w and wo) and Lagrangian is

L(w, wo, α) =
‖w‖2

2
+

n∑
i=1

αi

(
1− yi(w

′xi + wo)
)
.

Setting the partial derivatives to zero, we obtain

∂

∂wo

L(w,wo, α) = −
n∑

i=1

αiyi = 0

∂

∂wj

L(w,wo, α) = wj −
n∑

i=1

αiyix
j
i = 0, j = 1, . . . d.

Therefore
∑

i αiyi = 0 and

wj
α =

n∑
i=1

αiyix
j
i , i = 1, . . . , d ⇔ wα =

n∑
i=1

αiyixi (4.2.5)

Plugging these equalities into L(w,wo, α), we get

θ(α) =
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj (4.2.6)

so that dual problem is

max
α∈Rn

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj (4.2.7)

subject to αi ≥ 0,
n∑

i=1

yiαi = 0.

Let α∗ = (α∗1, . . . , α
∗
n)′ be the solution of (4.2.7). From (4.2.5), we get the solution of

primal problem (4.2.4)

w∗ = wα∗ =
n∑

i=1

α∗i yixi. (4.2.8)
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KKT:

α∗i ≥ 0, i = 1, . . . , n

yi(w
∗′xi + w∗

0) ≥ 1, i = 1, . . . , n

α∗i
(
1− yi(w

∗′xi + w∗
0)) = 0, i = 1, . . . , n

Note: α∗i > 0 implies that yi(w
∗′xi + w∗

0) = 1: the distance of xi from the hyperplane is
minimal (equals to margin). The sample points xi having the corresponding α∗i not zero ar
called support vectors . The support vectors are closest to the separating hyperplane
and they are most informative: the solution w∗ depends on support vectors, only . Indeed,

w∗ =
∑
i∈SV

α∗i yixi, (4.2.9)

where SV is the set of indexes of support vectors. Eliminating all other points from the
sample apart the support vectors, we would have the same solution. Unfortunately we do
not know them in advance.

To find the constant w∗
0 take any support vector xi. Thus yi(w

∗′xi + w∗
0) = 1 or

w∗
0 = yi − w∗′xi.

With obtained w∗ and w∗
o, the classification rule is

g(x) = sgn
(
w∗′x + w∗

o

)
= sgn

(∑
i∈sv

yiα
∗
i x
′
ix + w∗

o

)
. (4.2.10)

By strong duality θ(α∗) = f(x∗). Thus

∑
i

α∗i −
1

2

n∑
i,j

α∗i α
∗
jyiyjx

′
ixj =

1

2
‖w∗‖2 =

1

2

n∑
i,j

α∗i α
∗
jyiyjx

′
ixj.

Therefore ∑
i

α∗i =
n∑
i,j

α∗i α
∗
jyiyjx

′
ixj = ‖w∗‖2

and the margin of the optimal hyperplane can be found via α∗ as follows:

γ =
1

‖w∗‖ =
(∑

i∈sv

α∗i
)− 1

2
. (4.2.11)

The smaller are α∗i ’s, the bigger margin.

The following exercise shows that the support vectors are not always uniquely defined.
The support vectors that appear in all possible expansions ar called essential support
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vectors.

Exercise: Let d = 2,

x1 =

(
0
1

)
, x2 =

(−1
0

)
, x3 =

(
0
0

)
, x4 =

(
1
0

)
,

y1 = −1, y2 = y3 = y4 = 1.
This is a linearly separable sample with margin 1

2
.

Show that the matrix (x′ixj)ij is



1 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




and ∑
i

αi − 1

2

n∑
i,j=1

yiyjαiαjx
′
ixj =

∑
i

αi − 1

2
(α2

1 + α2
2 + α2

4) + α2α4 = θ(α).

Let α∗ = (α∗i ) be the solution of dual (4.2.7) and let w∗ be the corresponding vector.
Control whether α∗ satisfies the conditions

∑
i α

∗
i = 4 so that ‖w∗‖ = 2, and θ(α∗) = 2.

Show that the following vectors all are the solutions of (4.2.7):

(2, 0, 2, 0), (2,
2

3
,
2

3
,
2

3
), (2, 1, 0, 1).

The following exercise gives a geometric interpretation to support vectors

Exercise. Let x1, . . . , xn be linearly separable; let K+ and K− be the convex hulls of
subsamples:

K+ := {
∑

i:yi=+1

cixi : ci ≥ 0,
∑

i

ci = 1}, K− := {
∑

i:yi=−1

cixi : ci ≥ 0,
∑

i

ci = 1}.

Show that optimal hyperplane is orthogonal to the shortest line joining K+ and K−. To
show that consider the following optimization problem:

min
c1,...,cn

‖
∑

i:yi=+1

cixi −
∑

i:yi=+1

cixi‖ (4.2.12)

∑
i:yi=+1

ci = 1,
∑

i:yi=−1

ci = 1, ci ≥ 0.

Let c∗i be the solution of (4.2.12),

v∗ := c+ − c−, c+ :=
∑

i:yi=+1

c∗i xi, c+ :=
∑

i:yi=+1

c∗i xi.
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Prove that the solutions of (4.2.12) are

c∗i =
2α∗i∑

i α
∗
i

,

where α∗i are the solution of dual problem (4.2.7). Conclude that

v∗ =
2w∗

‖w∗‖2
,

where w∗ =
∑

i α
∗
i yixi. Hence v∗ and w∗ span the same one-dimensional hyperplane and

w∗ is proportional to the smallest interval joining K+ and K−. Show that margin γ sat-
isfies the equality 2γ = ‖v∗‖. Show that wo is such that optimal hyperplane crosses v∗ at
the middle. (Hint: show that w∗′(c+ + c−) + 2wo = 0).

4.2.2 Linearly not separable sample – soft margin

If the sample is not linearly separable, then the problem (4.2.2) is not feasible. In this
case concept of (geometrical) margin is relaxed as follows. Consider a hyperplane

H = {x : w′x + wo = 0},
where ‖w‖ = 1 and let γ > 0 be a non-negative constant still called as margin. Then for
any (xi, yi) the margin error is

(
γ − yi(w

′xi + wo)
)
+

where (x)+ =

{
x, if x > 0;
0, if x ≤ 0.

76



Hence the margin error of (xi, yi) is zero, if the distance of xi from H is at least γ and
H classifies (xi, yi) correctly. Otherwise the margin error is positive even if (xi, yi) is
correctly classified. If (xi, yi) is incorrectly classified, then the margin error is larger than
γ. When the sample is not linearly separable, there is no hyperplane (no pair w,wo) and
no marginal γ so that all margin errors are zero. In the presence of margin errors, γ is not
obviously any more the geometrical margin of the training sample, therefore it is called a
soft margin.

If the sample is linearly not separable, then there are many alternative ways to find
the best classifier. Typically the alternatives are in form

min
w:‖w‖=1,wo,γ≥0

[
h(γ) + D

n∑
i=1

u
(
(γ − yi(w

′xi + wo))+

)]
, (4.2.13)

where h is decreasing as γ grows and u is non-decreasing. Hence the aim is simultaneously
maximize the margin γ and minimize the margin errors. The constant D > 0 is the
regularization constant that regulates the tradeoff between two problems: increasing D
increases the penalty of margin errors so that the solution of (4.2.13) has smaller margin.

1-norm soft margin. The most natural choice for u and h are the identity functions
(in particular h(γ) = −γ) resulting the following optimization problem

min
w:‖w‖=1,wo,γ≥0

(
− γ + D

n∑
i=1

(
γ − yi(w

′xi + wo)
)
+

)
. (4.2.14)

Note that it is meaningful to take D ≥ 1
n
, since with D < 1

n
the optimal γ∗ = ∞. On

the other hand, if the sample is non-separable, there exists a Do ≤ 1 so that γ∗ = 0, if
D > Do. In section 4.2.3, we show that (4.2.14) is in a sense equivalent to the following
problem

min
w:‖w‖=1,wo,γ≥0

(1

2

1

γ2
+

C

γ

n∑
i=1

(
γ − yi(w

′xi + wo)
)
+

)
. (4.2.15)

The equivalence means that for every C, there exists a constant D (that depends on data)
so that the solutions of (4.2.14) define the same hyperplane as the solutions of (4.2.15).
Also for every D in a certain range, there exists a constant C (depending on the data) so
that the solutions of (4.2.15) defines the same hyperplane as the ones of (4.2.14). Since
(4.2.15) is more common in the literature, we shall mostly consider this problem. Note
that (4.2.15) minimizes the sum of relative margin errors. Just like in the hard margin
case, relaxing the condition ‖w‖ = 1 allows to replace γ by 1

‖w‖ so that the problem (4.2.15)
is equivalent to the following problem called as 1-norm soft margin SVM problem:

min
w,wo

1

2
‖w‖2 + C

n∑
i=1

(
1− yi(w

′xi + wo)
)
+
. (4.2.16)
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To solve (4.2.16), the so called slack variables ξi i = 1, . . . , n are introduced. With
these variables the problem (4.2.16) is

min
w,wo,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi (4.2.17)

subject to yi(w
′xi + wo) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

Let us solve (4.2.16). Lagrangian:

L(w, wo, ξ, α, γ) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑

i=1

γiξi +
n∑

i=1

αi

(
1− ξi − yi(w

′xi + wo)
)

=
1

2
‖w‖2 +

n∑
i=1

ξi(C − αi − γi) +
n∑

i=1

αi

(
1− yi(w

′xi + wo)
)
.
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Setting the derivatives with respect to w wo and ξ equal to zero, we obtain

wα =
n∑

i=1

αiyixi

0 =
n∑

i=1

αiyi

C =αi + γi.

Plugging wα into L(w,wo, ξ, α, γ) and taking account that
∑n

i=1 ξi(C − αi − γi) = 0, we
obtain the dual problem

θ(α, γ) =
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj.

Note that the obtained dual problem is the same we had for hard margin case (4.2.6), but
the constraints are different. Indeed, the dual problem now is

max
α,γ

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj, (4.2.18)

subject to αi ≥ 0, γi ≥ 0,
n∑

i=1

αiyi = 0, αi + γi = C, i = 1, . . . , n.

Since γ is not in the objective, the problem above is equivalent to

max
α

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj, (4.2.19)

subject to
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C.

To summarize: the dual of the 1-norm soft margin problem differs from the dual of the
hard-margin problem by the additional constraint αi ≤ C ∀i. In literature, that addi-
tional constraint is known as box constraint .

Let α∗ and γ∗ be the solutions of (4.2.19). Then the optimal vector is (as in the hard
margin case (recall (4.2.8)):

w∗ =
n∑

i=1

α∗i yixi.

KKT:

γ∗ + α∗ = C

γ∗i ξ
∗
i = 0, ∀i (4.2.20)

α∗i (1− ξ∗i − (w∗′xi + w∗
o)yi) = 0, ∀i. (4.2.21)
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Support vectors are those xi for which α∗i > 0. Thus, (4.2.21) implies that for every
support vector the following holds:

1− ξ∗i − (w∗′xi + w∗
o)yi = 0 ⇔ (w∗′xi + w∗

o)yi ≤ 1.

Hence, if xi is a support vector, then (xi, yi) has a margin error: either misclassification,
i.e. (w∗′xi + w∗

o)yi < 0 or the distance of xi from the optimal hyperplane is smaller than
marginal, i.e. 0 ≤ (w∗′xi + w∗

o)yi ≤ 1.
Since α∗i + γ∗i = C, from (4.2.20) it follows that 0 < α∗i < C implies ξ∗i = 0 and (4.2.21)
in turn implies (w∗′xi + w∗

o)yi = 1.
If (w∗′xi + w∗

o)yi < 1, then ξ∗i > 0, so that γ∗i = 0 and α∗i = C.
If α∗i = 0, then γ∗i = C so that by (4.2.21) ξ∗i = 0 and (w∗′xi + w∗

o)yi ≥ 1.

To summarize:

(w∗′xi + w∗
o)yi > 1 ⇒ α∗i = 0 ⇒(w∗′xi + w∗

o)yi ≥ 1

0 < α∗i < C ⇒(w∗′xi + w∗
o)yi = 1

(w∗′xi + w∗
o)yi < 1 ⇒ α∗i = C ⇒(w∗′xi + w∗

o)yi ≤ 1.

Sometimes the support vectors for which 0 < α∗i < C are called in-bound support
vectors. They are classified correctly and their distance from the hyperplane equals to
margin. The support vectors, for which α∗i = C are called bound -support vectors. All
vectors with margin error are bound support vectors.

The constant w∗
o. The constant could be determined via in-bound support vectors, since

for them the following equality has to hold: (w∗′xi + w∗
o)yi = 1. With optimal w∗ and w∗

o

the classifications rule is, as previously, (recall (4.2.2)):

g(x) = sgn
(
w∗′x + w∗

o

)
= sgn

(∑
i∈sv

yiα
∗
i x
′
ix + w∗

o

)
.

Remark: There might exist no in-bound support vectors. S

Exercise: Let d = 1, and x1 = y1 = −1, x2 = y2 = 1. Solve dual problem (4.2.19)
and show the for some C, it holds: α1 = α2 = C.

2-norm soft margin SVM problem. Recall that 1-norm soft margin problem was ob-
tained from the general problem (4.2.13) by taking h(γ) = −γ and u as identity function.
Another popular choice for u is quadratic function yielding the following problem

min
w:‖w‖=1,wo,γ≥0

(
− γ + D

n∑
i=1

(
γ − yi(w

′xi + wo)
)2

+

)
. (4.2.22)
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Again, just as in 1-norm case, it can be shown that (in a sense) the problem is equivalent
to the following problem

min
w:‖w‖=1,wo,γ≥0

(1

2

1

γ2
+

C

2γ2

n∑
i=1

(
γ − yi(w

′xi + wo)
)2

+

)
.

Maximizing 1
‖w‖ instead γ gives an equivalent form

min
w,wo

(1

2
‖w‖2 +

C

2

n∑
i=1

(
1− yi(w

′xi + wo)
)2

+

)
. (4.2.23)

With slack variables (4.2.23) is

min
w,wo,ξ

1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i

subject to yi(w
′xi + wo) ≥ 1− ξi ξi ≥ 0, i = 1, . . . , n.

Note that we can remove the constraint ξi ≥ 0, hence the problem (4.2.23) is

min
w,ξ

1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i

subject to yi(w
′xi + wo) ≥ 1− ξi i = 1, . . . , n.

Lagrangian:

L(w,wo, ξ, α) =
1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i +

n∑
i=1

αi

(
1− ξi − yi(w

′xi + wo)
)

=
1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

ξiαi +
n∑

i=1

αi

(
1− yi(w

′xi + wo)
)

=
1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

ξiαi +
n∑

i=1

αi

(
1− yiw

′xi

)− wo

n∑
i=1

αiyi.

Setting the derivatives with respect to w wo and ξ to zero, we obtain

wα =
n∑

i=1

αiyixi

0 =
n∑

i=1

αiyi

0 =Cξi − αi ⇒ ξi =
αi

C
, i = 1, . . . , n.
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Plugging the optimal wα and ξi into L(w, wo, ξ, α) we obtain the dual

θ(α) =
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj +

1

2C

n∑
i=1

α2
i −

1

C

n∑
i=1

α2
i

=
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj − 1

2C

n∑
i=1

α2
i

=
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyj

(
x′ixj +

1

C
δij

)
,

where δij is Kronecker’s delta. The dual problem is

max
n∑

i=1

αi − 1

2

n∑
i,j

αiαjyiyj

(
x′ixj +

1

C
δij

)
(4.2.24)

subject to αi ≥ 0,
n∑

i=1

yiαi = 0. (4.2.25)

The obtained dual problem is almost the same as the dual problem in hard-margin case
(4.2.7) except that the constants 1

C
are added to the main diagonal of the matrix (x′ixj).

KKT: α∗i ≥ 0, ξ∗i =
α∗i
C

and

n∑
i=1

α∗i
(
1− ξ∗i − yi(w

∗′xi + w∗
o)

)
= 0.

Hence α∗i > 0 implies that ξ∗i > 0 and

yi(w
∗′xi + w∗

o) = 1− α∗i
C

.

Hence all support vectors (those xi for which αi > 0) correspond to margin errors and
the equality above can be used to determine the constant w∗

o.

Exercise. Prove that

‖w∗‖2 =
∑

i

α∗i −
1

C

∑
i

(α∗i )
2

so that the margin can be found as follows

γ =
(∑

i

α∗i −
1

C

∑
i

(α∗i )
2
)− 1

2
.
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Exercise. Generalize the problems (4.2.16) and (4.2.23) by defining a separate penalty
constant Ci for every i.

Exercise. Find the dual problem of the primal problem

min
w,wo,ξ

1

2
‖w‖2 + C1

n∑
i=1

ξi +
C2

2

n∑
i=1

ξ2
i

subject to yi(w
′xi + wo) ≥ 1− ξi ξi ≥ 0, i = 1, . . . , n.

4.2.3 Equivalent problems

Here we show the equivalence of (4.2.16) and (4.2.14). The similar relation between 2-
norm problems (4.2.22) and (4.2.2) can be obtained similarly.

Recall the solutions of (4.2.16):

w∗ =
∑

i

α∗i yixi, w∗
o = −1

2
(w∗′xi+w∗′xj), where 0 < α∗i , α

∗
j < C and yi = 1, yj = −1.

Here α∗ is the solution of dual (4.2.19):

max
α

∑
i

αi − 1

2

n∑
i,j

αiαjyiyjx
′
ixj,

subject to
n∑

i=1

αiyi = 0

αi ∈ [0, C], ∀i.
We shall show that to every C correspond constants D and c > 0 so that cw∗ and cw∗

o

are the solutions of (4.2.14):

min
u:‖u‖=1,b,γ≥0

(
− γ + D

n∑
i=1

(
γ − yi(u

′xi + b)
)
+

)
.

Let A =
∑n

i=1 α∗i and define D := C
A
. With slack variables (4.2.14) is

min
α,b,γ,ξ

− γ + D

n∑
i=1

ξi

subject to yi(u
′xi + b) ≥ γ − ξi ξi ≥ 0, i = 1, . . . , n, ‖u‖ = 1.

Lagrangian:

L(w,wo, γ, ξ, ρ, λ) := −γ + D
∑

i

ξi −
∑

i

βi

(
yi(w

′xi − wo)− γ + ξi

)−
∑

i

ρiξi + λ
(‖w‖2 − 1

)
,
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where ρi ≥ 0, βi ≥ 0. The dual problem is (see [11], ch 7.2)

max
β

1− 1

2

n∑
i,j

βiβjyiyjx
′
ixj, (4.2.26)

subject to
n∑

i=1

βiyi = 0

βi ∈ [0, D], ∀i
n∑

i=1

βi = 1.

With the solutions β∗i of the dual problem, the solution of the primal problem is

u∗ =
1

2λ

∑
i

β∗i yixi, where λ =
1

2

√√√√
n∑
i,j

β∗i β
∗
j yiyjx′ixj

b∗ = −1

2

(
u∗′xj + u∗′xi

)
, where 0 < β∗i , β

∗
j < D and yi = 1, yj = −1.

Let us now show that the dual problems (4.2.19) and (4.2.26) are related as follows: α∗i
A

are the solutions of (4.2.26), i.e. α∗i
A

= β∗i . Clearly
∑

i

α∗i
A

= 1,
α∗i
A
∈ [0,

C

A
]

so that the constraints are satisfied.
If α∗i

A
were not the solutions of (4.2.26), then for some βi ∈ [0, D] such that

∑
i βi = 1, the

following equality would hold:

−1

2

n∑
i,j

βiβjyiyjx
′
ixj > − 1

2A2

n∑
i,j

α∗i α
∗
jyiyjx

′
ixj.

Defining αi := Aβi, we would obtain that αi ∈ [0, C] and

−1

2

n∑
i,j

αiαjyiyjx
′
ixj > −1

2

n∑
i,j

α∗i α
∗
jyiyjx

′
ixj,

so we would have a contradiction. Thus α∗i
A

= β∗i so that

w∗

A
=

∑
i

β∗i yixi = 2λu∗.

When 0 < α∗i , α
∗
j < C and yi = 1, yj = −1, then the corresponding 0 < β∗i , β

∗
j < D.

Hence
w∗

o = −1

2
(w∗′xi + w∗′xj) = −2λA

1

2
(u∗′xi + u∗′xj) = 2Aλb∗.
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Thus
w∗ = 2Aλu∗, w∗

o = 2Aλb∗.

Since ‖u∗‖ = 1, we have that ‖w∗‖ = 2Aλ. Recall that ‖w∗‖−1 = γ∗, where γ∗ is the
optimal margin, so that u∗ = γ∗w∗ and b∗ = γ∗wo.

The one-to-one correspondence. To show that to a D corresponds a C such that
the solutions of (4.2.14) were proportional to the solutions (4.2.16), we could use the same
argument, if there exists a C so that D = C

A
(recall that A depends on C). Let us calculate

A. Since

‖w∗‖2 =
n∑
i,j

α∗i α
∗
jyiyjx

′
ixj,

from the equality of dual and primal solution, we have

θ(α∗) = A− 1

2
‖w∗‖2 =

1

2
‖w∗‖2 + C

∑
i

ξ∗i ⇒ A = ‖w∗‖2 + C
∑

i

ξ∗i .

Hence
C

A
=

C

‖w∗‖2 + C
∑

i ξ
∗
i

and it is easy to verify that is non-decreasing and continuous in C. Hence there exists a
limit D̄ = limC→∞ C

A
so that for D < D̄, there exists a corresponding C meaning that in

certain range of D the equivalence of two problems holds.

The constants C and D. Since u∗ = γ∗w∗, b∗ = γ∗wo, it holds (w∗′xi + w∗
o)yi = 1 iff

(u∗′xi + b∗)yi = γ∗. Since α∗i
A

= β∗i , from the properties of α∗i , we obtain

(u∗′xi + b∗)yi > γ∗ ⇒ β∗i = 0 ⇒(w∗′xi + b∗)yi ≥ γ∗

0 < β∗i < D ⇒(u∗′xi + b∗)yi = γ∗

(u∗′xi + b∗)yi < γ∗ ⇒ β∗i = D ⇒(u∗′xi + b∗)yi ≤ γ∗.

But, in addition
∑

i β
∗
i = 1. This allows us to obtain a interpretation to the constat D.

Indeed, since β∗i ≤ D, clearly it must hold D ≥ 1
n
, otherwise the constraint

∑
i β

∗
i = 1

cannot be satisfied. Often it is suggested to use D = 1
νn
, where ν ∈ (0, 1]. In this case

the parameter ν controls the proportion of bound support vectors: for bound support
vectors β∗i = 1

νn
and

∑
i β

∗
i = 1, it follows that there cannot be more than νn bound

support vectors. Hence ν controls the number of margin errors. Similarly, it follows that
there must be at least νn support vectors, because at least νn coefficients β∗i must be
positive. Hence, choosing D properly helps us to control the proportion of margin errors
and support vectors.
The constant C does not have such a nice interpretation: although C = DA, we do not
know the value of A in advance. In practice, however, choosing C is an important issue
and typically several cross-validation methods are used.
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4.3 Some risk bounds for large margin classifiers
Functional margin. Recall the linear discriminant:

g(x) = sgn
(
f(x)

)
=

{
1, if f(x) ≥ 0;
0, if f(x) < 0. (4.3.1)

where f(x) = w′x + w0 is a linear function. If ‖w‖ = 1 and g classifies xi correctly,
then yif(xi) (that is always positive) is geometric margin of (xi, yi). Let us generalize the
concept of geometrical margin as follows.

Let f : Rd → R be a function and define a classifier g like (4.3.1). Hence g classifies
(xi, yi) correctly if yif(xi) > 0 and incorrectly if yif(xi) < 0. The number yif(xi) is
called functional margin of (xi, yi).

The risk and empirical risk of g as in (4.3.1) are

R(g) = P(Y 6= sgn(f(X)) ≤ EI{f(X)Y≤0}, Rn(g) =
1

n

n∑
i=1

I{sgnf(xi)6=yi} ≤
1

n

n∑
i=1

I{yif(xi)≤0}.

The quantity An(f). Let, for every f

An(f) =
1

n

n∑
i=1

φ(−f(xi)yi), φ(z) =





1, if z ≥ 0;
1 + z

γ
, if −γ ≤ z ≤ 0;

0, if z < −γ

The quantity An(f) can be estimated above as follows:

• From φ(z) ≤ I(−γ,∞)(z), we obtain that

An(f) ≤ 1

n

n∑
i=1

I{−f(xi)yi>−γ} =
1

n

n∑
i=1

I{f(xi)yi<γ} =: Rγ
n(f).

The number Rγ
n is the proportion of margin errors. Recall that a pair (xi, yi) counts

as a margin error even if sgnf(xi) = yi (i.e. f(xi)yi > 0) but the "confidence of
classification" f(xi)yi is below γ.

• On the other hand,

φ(z) ≤ (1 +
z

γ
)+, where (x)+ =

{
x, if x > 0;
0, if x ≤ 0.

Hence,

An(f) ≤ 1

n

n∑
i=1

(1− yif(xi)

γ
)+ =

1

nγ

n∑
i=1

(γ − yif(xi))+ =
1

nγ

n∑
i=1

ξi,

where
ξi := (γ − yif(xi))+ ≥ 0.

The number ξi, as we already know, measures the size of margin error.
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Margin bounds for linear functions. Recall (4.2.9):

w∗ =
∑
i∈SV

α∗i yixi.

Let us consider the set of linear functions

F1 :=
{
f(x) = w∗′x : ‖w‖ ≤ 1

}
.

Hence, the linear function x 7→ w∗′x with ‖w∗‖ ≤ 1 belongs to F1.

Let γ > 0 be fixed and let fn ∈ F1 be chosen using the data (X1, Y1), . . . , (Xn, Yn)
(when dealing with risk bounds, the sample is considered as random). Let gn = sgnfn

be the corresponding classifier. Then the following risk bound holds ([11], p. 103): with
probability at least 1− δ

R(gn) ≤ An(fn) +
4

nγ

√√√√
n∑

i=1

X ′
iXi + 3

√
ln 2

δ

2n
. (4.3.2)

Since An(f) ≤ Rγ
n(g), (4.3.2) yields (see also [3] Cor 4.3): with probability 1− δ,

R(gn) ≤ Rγ
n(gn) +

4

nγ

√√√√
n∑

i=1

X ′
iXi + 3

√
ln 2

δ

2n
. (4.3.3)

This bound justifies maximizing margin and minimizing the number of margin errors,
simultaneously.

The estimate

An(f) ≤ 1

nγ

n∑
i=1

ξi

together with (4.3.2) yields another bound suitable for estimating the risk of 1-norm soft
margin classifiers ([11], Thm 4.17): with probability at least 1− δ,

R(gn) ≤ 1

nγ

n∑
i=1

ξi +
4

nγ

√√√√
n∑

i=1

X ′
iXi + 3

√
ln 2

δ

2n
. (4.3.4)

This bound justifies to maximize margin and minimize the sum of margin errors just like
in 1-norm soft margin problems.

Using φ2 instead of φ, be similar argument as above, on can obtain a bound suitable
for estimating the risk of 2-norm soft margin classifiers ([11], (7.13)): with probability at
least 1− δ,

R(gn) ≤ 1

nγ2

n∑
i=1

ξ2
i +

8

nγ

√√√√
n∑

i=1

X ′
iXi + 3

√
ln 2

δ

2n
. (4.3.5)
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This bound justifies to maximize margin and minimize the sum of margin errors just like
in 2-norm soft margin problems.

Remarks:

1 Note that obtained bounds hold for linear discriminants without constants, because the
set F1 consists of linear (not affine) functions, only. That is no essential restriction,
since the constants can be captured into feature vector by increasing the dimension
by one and new feature s have dimension d+1 instead of d. But then the condition
‖w‖ ≤ 1 should be replaced by ‖w‖2 +w2

o ≤ 1 and
√∑n

i=1 X ′
iXi should be replaced

by
√∑n

i=1 X ′
iXi + 1. However, formally the risk bounds above cannot be used for

exact risk bounds of support vector classifiers, since they contain wo.

2 All the bounds above are valid for fixed γ, only. Hence they are not uniform bounds
and, therefore, they do not apply when the (optimal) margin has been chosen using
the data as it is done in support vector classification. Uniform bound would have
an additional term. However, although recognized (see Remark 7.17) these two
deficiencies (no constants and uniformity) are disregarded in [11] and the bounds
(4.3.4) and (4.3.5) are stated for as valid bonds 1-norm and 2-norm support vector
classifiers, respectively.

3 Another class of large margin bounds are based on the generalization of VC-dimension
for taking account the margin – so-called fat-shattering dimension (the number of
maximal set of points that can be shattered with given margin). If all the points
are in a ball of radius r < ∞, then the fat-shattering dimension can be smaller than
usual VC-dimension. Hence these bounds are useful under additional assumption
that the feature vector has bounded support, i.e. for a r < ∞, P(‖X‖ ≤ r) = 1.
These bounds can be found, for example, in [5], Ch 10, [10], Ch. 4.

4.4 (Non-linear) support vector machines
So far, we have considered linear discriminants. The idea of many non-linear classification
methods is to transform the data non-linearly into a space, where linear discriminants can
be applied. Applying this idea for the support vector classification described in the last
section gives us so-called support vector machine (SVM) classifiers . Thus, let

Φ : Rd → H

be a mapping from the feature space into another space H. In space H, the transformed
sample is

(Φ(x1), y1), . . . , (Φ(xn), yn)

and now, in principle, every linear discriminant can be applied. The resulting classifier in
original feature space Rd is then typically non-linear.
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The idea of projecting the data into a space that is more convenient for linear analysis
is very old (recall LDA), but unlike classical multivariate analysis, in SVM classification
the space H is not a low-dimensional subspace, but typically very high, possible infinite-
dimensional. At the first sight, such an approach might seem useless, since working in a
high dimensional space is typically much more difficult as working in the original space.
It turns out that for a large class of transformations Φ, the high dimensionality of H does
not cause additional computational difficulties.

Example. Let

Φ : R2 → R3, Φ(x) = Φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2) = (z1, z2, z3).

Every hyperspace H = {z : w′z + w0 = 0} in R3 is a second order curve

{(x1, x2) : w1x2
1 + w2

√
2x1x2 + w3x2

2 + w0 = 0}

in R2 so that the corresponding classifier in is non-linear. The figure illustrates the case
when in the original space R2 the data are not linearly separable, but after transformation
into R3, they are linearly separable.

In SVM, the space H is a Hilbert space (complete inner product (dot product) space).
Every hyperplane in H is then

{z ∈ H : 〈w, z〉+ w0 = 0}, where w ∈ H, w0 ∈ R1.

Applying a linear discriminant to transformed data Φ(x1), . . . , Φ(xn), we obtain a non-
linear classifier in Rd:

g(x) = sgn(〈w, Φ(x)〉+ w0). (4.4.1)
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1 and 2-norm soft margin SVM. Applying the support vector classifiers from the
last section, we get the following optimization problems:

min
w∈H,wo∈R

1

2
〈w, w〉+ C

n∑
i=1

(
1− yi(〈w, Φ(xi)〉+ wo)

)
+

with the corresponding dual

max
α∈Rn

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyj〈Φ(xi), Φ(xj)〉

subject to C ≥ αi ≥ 0,
n∑

i=1

yiαi = 0

(1-norm soft margin), or

min
w∈H,wo∈R

1

2
〈w,w〉+

C

2

n∑
i=1

(
1− yi(〈w, Φ(xi)〉+ wo)

)2

+

with the corresponding dual

max
α∈Rn

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyj

(〈Φ(xi), Φ(xj)〉+
1

C
δij

)

subject to αi ≥ 0,
n∑

i=1

yiαi = 0

(2-norm soft margin).

Using the solutions α∗ of dual problems, the optimal solution for both problems is

w∗ =
n∑

i=1

α∗i yiΦ(xi).

For 1-norm soft margin, the constant w∗
0 will be determined from the equality

yi(〈w∗, Φ(xi)〉+ w∗
0) = yi

( n∑
j=1

α∗jyj〈Φ(xj), Φ(xi)〉+ w∗
o

)
= 1,

where xi is a in bound support vector, i.e. 0 < α∗i < C.
For 2-norm soft margin problem, the constant w∗

o will be determined from the equation

1− α∗i
C

= yi(〈w∗, Φ(xi)〉+ w∗
0) = yi

( n∑
j=1

α∗jyj〈Φ(xj), Φ(xi)〉+ w∗
o

)
,
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where xi is a support vector, i.e. α∗i > 0.

The classifier (4.4.1) is thus

g(x) = sgn
(〈w∗, Φ(x)〉+ w∗

o

)
= sgn

( n∑
i=1

α∗i yi〈Φ(xi), Φ(x)〉+ w∗
o

)
. (4.4.2)

Remark. IfH is a sequence space or Rm, then it can incorporate also the constant. Hence
the discriminative hyperplane in H can be defined without constant and the classifier
(4.4.1) is then g(x) = sgn

(〈w∗, Φ(x)〉). For example, if Φ is as in the example above, i.e.
Φ(x1, x2) = (x2

1,
√

2x1x2, x
2
2), then

〈w, Φ(x)〉+ wo = 〈u, Φ∗(x)〉,
where

Φ∗(x1, x2) = (x2
1,
√

2x1x2, x
2
2, 1), u′ = (w′, wo) ∈ R4.

4.5 Kernel

4.5.1 Kernel trick

Note: the optimal classifier (4.4.2) as well as the coefficients α∗i depend on Φ via the
product 〈Φ(x), Φ(y)〉 only. Hence in order to find and use (4.4.2) it suffices to know the
function:

K : Rd × Rd → R, K(x, y) := 〈Φ(x), Φ(y)〉. (4.5.1)

The function K(x, y) is known as kernel and typically K(x, y) can be calculated directly
in space Rd without applying Φ. This means that all computations for applying SVM
cold be done using d-dimensional feature vectors but not very high dimensional elements
in H. This so-called kernel trick makes SVM’s possible.

Example. In the previous example,

K(x, y) = (x2
1,
√

2x1x2, x
2
2)




y2
1√

2y1y2

y2
2


 = (x1y1 + x2y2)

2 = (x′y)2.

Hence, finding K(x, y) is relatively easy and the could be done without applying Φ. Note
that different mappings Φ can define the same kernel. For example, the same kernel
K(x, y) = (x′y)2 is defined by mapping

Φ′ : R2 → R4, Φ′(x1, x2) = (x2
1, x1x2, x1x2, x

2
2).

With kernel K, the classifier (4.4.1) is

g(x) = sign
(∑

i∈SV

α∗i yiK(xi, x) + w∗
o

)
(4.5.2)
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where α∗i are the solutions of dual problem. With kernels, the 1-norm soft margin dual
problem (4.2.7) is as follows

max
α∈Rn

n∑
i=1

αi − 1

2

n∑
i,j

αiαjyiyjK(xi, xj).

Now it is clear, why in SVM-classification the main object of interest is not the mapping
Φ, rather than the kernel K. Different kernels define different classifiers, hence choosing
the kernel means choosing the class of classifiers G. After choosing the kernel – the class
G – SVM picks a classifier gn ∈ G that in a sense is the best.

Risk bounds. The risk bound from Section 4.3 hold also for non-linear SVM’s. The
space F1 is now

F1 =
{

f(x) = 〈w, Φ(x)〉 : w ∈ H, ‖w‖ ≤ 1
}

and for every classifier

gn(x) = sgn
(〈w, Φ(x)〉) such that 〈Φ(x), Φ(x)〉 = ‖w‖2 ≤ 1

and fixed γ the bound (4.3.4) is: with probability 1− δ

R(gn) ≤ 1

nγ

n∑
i=1

ξi +
4

nγ

√√√√
n∑

i=1

K(Xi, Xi) + 3

√
ln 2

δ

2n
.

The bound (4.3.5) is: with probability 1− δ

R(gn) ≤ 1

nγ2

n∑
i=1

ξ2
i +

8

nγ

√√√√
n∑

i=1

K(Xi, Xi) + 3

√
ln 2

δ

2n
.

4.5.2 How to recognize a kernel?

Replacing Φ by the kernel seems like a reasonable ida, but how do we know that a
function K(x, y) is a kernel? Formally kernel is defined via Φ, but would it be possible
to decide whether a function K(x, y) is a kernel without knowing or Φ. Clearly a kernel
is symmetric function, i.e. K(x, y) = K(y, x). Also it clear that for any x1, . . . , xn in Rd,
the Gram matrix : (

K(xi, xj)
)

i,j

must be positively semi-definite.

Exercise: Prove that
(
K(xi, xj)

)
i,j

is positively semi-definite.
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Definition 4.5.1 Let X be arbitrary. The function

K : X × X → R

is positively (semi)-definite , if it is symmetric and for every finite set {x1, . . . , xn} ⊂ X
the corresponding Gram matrix is positively (semi)-definite.

Thus, when K is a kernel, i.e. ∃ Φ : X → H such that K(x, y) = 〈Φ(x), Φ(y)〉, then it
is positively semi-definite. The following theorem states that positive semi-definiteness is
also sufficient for being a kernel.

Theorem 4.5.2 (Moore-Aronszajn, 1950) Let X be arbitrary not empty set. A
function

K : X × X → R

is a kernel if and only is it is positively semi-definite.

Tho only if part is obvious.

The idea of proof. At fist show the existence of a inner product space F and mapping

Φ : X → F such that 〈Φ(x), Φ(y)〉 = K(x, y).

Then the space is completed. Then there exist a Hilbert space H so that

Φ : X → H and 〈Φ(x), Φ(y)〉 = K(x, y).

The construction. Let K be a positive semi-definite function. Define the mapping

Φ : X → RX , Φ(x) = K(x, ·). (4.5.3)

Let us define a vector space F as follows

F = span{K(x, ·) : x ∈ X} =
{ m∑

i=1

αiK(xi, ·) : x1, . . . , xm,m ∈ N, αi ∈ R
}
. (4.5.4)

Now we define a inner product in F as follows. Let

f =
m∑

i=1

αiK(xi, ·), g =
n∑

i=1

βiK(yi, ·)

and

〈f, g〉 =
〈 m∑

i=1

αiK(xi, ·),
n∑

i=1

βiK(yi, ·)
〉

:=
m∑

i=1

n∑
j=1

αiβjK(xi, yj). (4.5.5)

To see that 〈·, ·〉 is a inner product, one has to make sure that it is properly defined and
satisfies all the axioms of a inner product. The correctness of the definition means that
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if the representation of f or g is not unique, then 〈f, g〉 is always the same. To see that
note

〈f, g〉 =
m∑

i=1

n∑
j=1

αiβjK(xi, yj) =
m∑

i=1

αig(xi) =
n∑

j=1

βjf(yj). (4.5.6)

Hence, if there exists m′ and α′i such that f =
∑m′

i=1 α′iK(x′i, ·), then the
∑n

j=1 βjf(yj) will
remain unchanged. Hence 〈f, g〉 is correctly defined.
The axioms of a inner product are:

1. 〈f, f〉 ≥ 0

2. 〈f, g〉 = 〈g, f〉
3. 〈f + h, g〉 = 〈f, g〉+ 〈h, g〉
4. 〈λf, g〉 = λ〈f, g〉
5. 〈f, f〉 = 0 ⇒ f = 0.

Exercise: Prove the axioms 1 – 4.

The axioms 1 – 4 state that 〈f, g〉 is a semi inner product. Then Cauchy-Schwartz
inequality holds:

〈f, g〉2 ≤ 〈f, f〉〈g, g〉. (4.5.7)
To prove the last axiom, note that for every f and x

〈f,K(x, ·)〉 = 〈
m∑

i=1

αiK(xi, ·), K(x, ·)〉 =
m∑

i=1

αiK(xi, x) = f(x). (4.5.8)

Thus, if 〈f, f〉 = 0, then for every x ∈ X ,

f 2(x) = |〈K(x, ·), f〉|2 ≤ 〈K(x, ·), K(x, ·)〉〈f, f〉 = K(x, x)〈f, f〉 = 0,

so that semi inner product is an inner product.

Hence the first part of the proof is completed: we have defined an inner product space
F and a mapping Φ : X → F . An inner product space is a normed vector space where
norm is ‖f‖ =

√
〈f, f〉 and Cauchy-Schwartz inequality is

|〈f, g〉| ≤ ‖f‖‖g‖.
The space F can be completed so that all properties hold. Thus there exists a Hilbert
space H of functions f : X → R so that K(x, ·) ∈ H for every x and, most importantly,
the property (4.5.8) holds: for every f ∈ H

〈K(x, ·), f〉 = f(x).

The obtained space H is called reproducing kernel Hilbert space (RKHS) .
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Definition 4.5.3 A Hilbert space H of functions on a set X is called a reproducing kernel
Hilbert space, if there exists a reproducing kernel K : X × X → R such that the
following conditions are satisfied:

i) for every x ∈ X , K(x, ·) ∈ H;

ii) the reproducing property (4.5.8) holds.

The following exercise shows that the reproducing kernel in the sense of above-stated
definition is the kernel in our sense, i.e. it is positively semi-definite.

Exercise: Let K : X × X → R be a symmetric function so that for every x, it holds
that K(x, ·) ∈ F , where F is an inner product space of functions. Prove that if (4.5.8)
holds, then K is positively semi-definite (hence symmetric).

The following exercise shows that if a Hilbert space of functions H admits a reproducing
kernel, then it is unique.

Exercise: Let K and K ′ be two reproducing kernels of a Hilbert space of functions.
Show that K = K ′, i.e. for every x, y ∈ X , K(x, y) = K ′(x, y).

The next exercise gives a nice characterization of a Hilbert space of functions to be RKHS.

Exercise: Using Riesz Representation theorem prove that a Hilbert space H ⊂ RX is
RKHS iff the functional f 7→ f(x) is continuous.

A bounded linear functional is continuous. Hence there is another commonly used defi-
nition of RKHS: a Hilbert space of functions H ⊂ RX is RKHS, if, for every x ∈ X the
pointwise evaluation f 7→ f(x) is bounded.

Exercise: Are the following Hilbert spaces RKHS: L2[0, 1]? l2? Rd? If yes, find the
reproducing kernel.

To summarize: for any kernel K (positive semi-definite function), there exists a Hilbert
space of functions H so that K is reproducing kernel of H (and H is therefore RKHS).
Then, for any x ∈ X , K(x, ·) ∈ H and K(x, y) = 〈K(x, ·), K(y, ·)〉. Hence, we can (and
we shall do so) always take Φ : X → H, Φ(x) = K(x, ·). Then any element w ∈ H is a
function and the reproducing property (4.5.8) is

〈Φ(x), w〉 = w(x). (4.5.9)

In the next subsection we see that using RKHS is beneficial in many ways.
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4.5.3 The Representer theorem

Recall SVM classification: an element w ∈ H was searched to minimize the objective

min
w∈H,wo∈R

1

2
‖w‖2 + C

n∑
i=1

(
1− yi(〈w, Φ(xi)〉+ wo)

)p

+
, (4.5.10)

where p = 1 or p = 2. And we saw that the optimal w∗ was always in the form

w∗ =
n∑

i=1

(α∗i yi)Φ(xi).

In the following we shall see that the property that the solution of an optimization problem
is a linear combination of the (support) vectors holds for a rather large class of problems.

At first note that solving (4.5.10) can be done in two parts: fix a constant wo and then
minimize over all vectors w ∈ H; finally minimize over wo. Hence, let us fix wo and
consider the problem

min
w

1

2
‖w‖2 + C

n∑
i=1

(
1− yi(〈w, Φ(xi)〉+ wo)

)p

+
, (4.5.11)

Let now H be RKHS. Hence w is a function and the reproducing property (4.5.9) holds:
〈w, Φ(xi)〉 = w(xi). Thus

(
1− yi(〈w, Φ(xi)〉+ wo)

)p

+
=

(
1− yi(w(xi) + wo)

)p

+

so that (4.5.11) is as follows

min
w∈H

1

2
‖w‖2 + L(w(x1), . . . , w(xn)), (4.5.12)

where L : Rn → R.

Theorem 4.5.4 (Representer Theorem) Let X be a set, let H be a RKHS and let
K be the corresponding kernel. For every function L : Rn → R and strictly monotonic
increasing function Ω : R→ R every minimizer of the problem

min
w∈H

Ω(‖w‖2) + L(w(x1), . . . , w(xn)), (4.5.13)

admits a reperesentation of the form

w =
n∑

i=1

αiK(xi, ·) =
n∑

i=1

αiΦ(xi), (4.5.14)

where α1, . . . , αn ∈ R.
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Thus, for every fixed wo, the solution of (4.5.11) is in the form (4.5.14). Hence the overall
minimizer w∗ (corresponding to the best wo has the similar representation.

Proof. Define
H‖ = span

{
K(xi, ·), i = 1, . . . , n}.

Hence H‖ is a subspace of functions
∑n

i=1 αiK(xi, ·). Every w ∈ H has an unique decom-
position

w = w‖ + w⊥,

where w‖ ∈ H‖ and w⊥ belongs to the orthogonal complement of H‖. Since, for every j,
K(xj, ·) ∈ H‖, it holds that for every j

w⊥(xj) = 〈w⊥, K(xj, ·)〉 = 0,

implying that

w(xj) = w‖(xj) + w⊥(xj) = w‖(xj)
(
=

n∑
i=1

αiK(xj, xi)
)
.

Thus, for every w,

L(w(x1), . . . , w(xn)) = L(w‖(x1), . . . , w‖(xn))

implying that minimizing L(w(x1), . . . , w(xn)) over H‖ is the same as minimizing it over
H. Since Ω is increasing, it holds that

Ω(‖w‖2) = Ω(‖w‖‖2 + ‖w⊥‖2) ≥ Ω(‖w‖‖2).

Therefore, minimizing Ω(‖w‖2)+L(w(x1), . . . , w(xn)) over H is equivalent to minimizing
it over H‖.

Hence, if H is RKHS, then the solution of (4.5.13) can be searched from the set

span
{

Φ(xi), i = 1, . . . , n
}

=
{ n∑

i=1

ciΦ(xi), ci ∈ R
}

,

and the optimization problem is n-dimensional even if the space H is infinite-dimensional.

Example. Let us consider 1-norm soft margin problem (4.5.10) with p = 1:

min
w∈H,wo∈R

1

2
‖w‖2 + C

n∑
i=1

(
1− yi(〈w, Φ(xi)〉+ wo)

)
+
. (4.5.15)

Due to Representer theorem, we search the solution in the form w =
∑n

i=1 ciΦ(xi). Hence

‖w‖2 = 〈
n∑

i=1

ciΦ(xi),
n∑

i=1

ciΦ(xi)〉 =
n∑

i,j=1

cicj〈
n∑

i=1

Φ(xi), Φ(xi)〉 =
n∑

i,j=1

cicjK(xi, xj) = c′Kc,
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where K is Gram matrix and c = (c1, . . . , cn)′ is the vector of unknown coefficients.
Since for every i = 1, . . . , n

〈w, Φ(xi)〉 = 〈
n∑

j=1

cjΦ(xj), Φ(xi)〉 =
n∑

j=1

cjK(xj, xi) =
n∑

j=1

K(xi, xj)cj,

the optimization problem is now

min
c∈Rn,wo∈R

1

2
c′Kc + C

n∑
i=1

(
1− yi

n∑
j=1

K(xi, xj)cj + wo)
)
+

and with help of slack variables, the problem is

min
c∈Rn,wo∈R

1

2
c′Kc + C

n∑
i=1

ξi

subject to yi

( n∑
j=1

K(xi, xj)cj + wo

) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

Lagrangian:

L(c, ξ, α, γ) =
1

2
c′Kc + C

n∑
i=1

ξi +
∑

i

αi

(
1− ξi − yi

( n∑
j=1

K(xi, xj)cj + wo

))−
∑

i

γiξi.

=
1

2
c′Kc− u′Kc +

∑
i=1

ξi(C − αi − γi) +
∑

i

αi,

where u = (u1, . . . , un), ui = yiαi.
The gradient

∇cL(c, ξ, α, γ) = Kc−Ku, ⇒ ∇cL(c, ξ, α, γ) = 0 ⇔ K(c− u) = 0.

Hence (recall K is symmetric) c′Kc = c′Ku = u′Kc = u′Ku. Setting the derivatives with
respect to ξ and wo equal to zero as well, we get the usual conditions

∑
i

yiαi = 0, αi + γi = C, i = 1, . . . , n.

Hence
θ(α, γ) =

1

2
u′Ku− u′Kc +

∑
i

αi.

With u′K = c′K, we get the familiar dual problem:

max
α

∑
i

αi − 1

2
u′Ku = max

α

∑
i

αi − 1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

subject to
∑

i

yiαi = 0, C ≥ αi ≥ 0, i = 1, . . . , n.
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With α∗ being the solution of dual problem, we get that the solution of primal problem,
let it be c∗, must satisfy the equality Kc∗ = Ku∗, where u∗ = (y1α

∗
1, . . . , ynα∗n). If K−1

exists, then it follows immediately that c∗ = u∗ and the solution of (4.5.15) is again

w∗ =
∑

i

yiα
∗
i Φ(xi). (4.5.16)

In general, c∗ should be such that K(c∗−u∗) = 0. It means that the sum
∑

i(c
∗
i −u∗)Φ(xi)

must satisfy the conditions
∑

i

K(xi, xj)(c
∗
i − u∗i ) = 〈

∑
i

(c∗i − u∗i )Φ(xi), Φ(xj)〉 = 0, j = 1, . . . , n.

Hence the vector
∑

i(c
∗
i − u∗)Φ(xi) must be orthogonal to every element in the space

span{Φ(xj) : j = 1, . . . , n}. Since ∑
i(c

∗
i − u∗)Φ(xi) belongs to the same space, it means

that ∑
i

(c∗i − u∗)Φ(xi) = 0, ⇒ w∗ =
∑

i

c∗i Φ(xi) =
∑

i

yiα
∗
i Φ(xi).

Hence the solution of (4.5.15) is again (4.5.16) even if c∗ 6= u∗.

References: For several generalization of the representer theorem, see [12], Ch 4.

4.5.4 The properties of kernels

Let X is an arbitrary set. Recall that every kernel is a positively semidefinite mapping on
X ×X . The following lemma shows that the set of kernels is closed under many algebraic
operations. These result help to construct kernels.

Lemma 4.5.1 Let K1 and K2 be kernels. Then the following functions are also kernels:

1. K(x, y) = K1(x, y) + K2(x, y);

2. K(x, y) = aK1(x, y), a ∈ R+;

3. K(x, y) = g(x)g(y), g : X → R;

4. K(x, y) = x′Ay, where A is a positively semi-definite matrix and X = Rd;

5. K(x, y) = K1(x, y)K2(x, y);

6. K(x, y) = p(K1(x, y)), where p is a polynomial with positive coefficients;

7. K(x, y) = K1(f(x), f(y)), f : X → X
8. K(x, y) = exp[K1(x, y)]

9. K(x, y) = exp[−‖x−y‖2
2σ2 ], x, y ∈ Rd.
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Proof. Exercise: Prove the properties 1, 2, 3, 4.

5) Let (V1, . . . , Vn) and (W1, . . . , Wn) be two independent multivariate normal random
vectors with means zero, and respective covariance matrices K1 and K2. Then the matrix
K, whose elements are the products of the corresponding elements of K1 and K2 is is the
covariance matrix of random vector (V1W1, . . . , VmWm) so that it is positive semi-definite.

Exercise Prove the properties 6) and 7).

8) Use Taylor expansion: for every x, y

exp[K1(x, y)] =
∞∑
i=0

1

i!
K1(x, y)i = lim

n
pn(K1(x, y)),

where pn(x) =
∑n

i=0
1
i!
xi. From property 6, we know that Kn(·, ·) := pn(K1(·, ·)) is a

kernel. Hence, there exists kernels Kn so that for all x, y, exp[K1(x, y)] = limn Kn(x, y).
Now it suffices to notice that a pointwise limit of kernels is a kernel

9) Since ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉, we have

exp[−‖x− y‖2

2σ2
] = exp[−‖x‖

2

2σ2
] exp[−‖y‖

2

2σ2
] exp[

〈x, y〉
σ2

] = K1(x, y)K2(x, y),

where
K1(x, y) = exp[−‖x‖

2

2σ2
] exp[−‖y‖

2

2σ2
], K2(x, y) = exp[

〈x, y〉
σ2

].

From the property 3) it follows that K1 is a kernel. From the property 8) it follows that
K2 is a kernel. From 5) it follows that K is a kernel.

Bochner’s theorem. The kernel

K(x, y) = exp[−‖x− y‖2

2σ2
] (4.5.17)

is in form f(x − y), where f : Rd → R. Is it possible to characterize functions f so
that K(x, y) := f(x − y) is a kernel? Those functions are called it positive semi-definite
functions.

Theorem 4.5.5 (Bochner) A continuous function f : Rd → R is positve semi-definite
if and only if if there there exists a finite measure µ on B(Rd) so that

f(x) =

∫
exp[−ix′z]µ(dz).

Note: when f(0) = 1, then µ is a probability measure and f is its characteristic function.
Now 9) of Lemma 4.5.1 immediately follows, since f(x) = exp[−‖x‖2

2σ2 ] is the characteristic
function of multivariate normal distribution N(0, σ2Id).
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4.5.5 Examples of kernels

Polynomial kernel. Let X = Rd, R > 0 and define polynomial kernel

K(x, y) :=
(
x′y + R

)p
=

p∑
s=0

(
p

s

)
Rp−s(x′y)s =

p∑
s=0

(
p

s

)
Rp−s(x′y)s (4.5.18)

From Lemma 4.5.1 we know that for any polynomial p with positive coefficients, the
mapping (x, y) 7→ p(x′y) is a kernel. Hence (4.5.18) is a kernel as well, because the
coefficients are non-negative:

(
p
s

)
Rp−s ≥ 0.

With polynomial kernel, a classifier (4.5.2) is

sign
(∑

i∈SV

α∗i yiK(xi, x) + w∗
o

)
= sign

(∑
i∈SV

α∗i yi(x
′
ix + R)p + w∗

o

)
,

so that the classification is based on the p-order surface
{
x :

∑
i∈SV

α∗i yi(x
′
ix + R)p = −w∗

o

}

The meaning of R becomes apparent from (4.5.18):

K(x, y) =

p∑
s=0

as(x
′y)s, as :=

(
p

s

)
Rp−s.

Hence R controls the relative weightings of the different degree monomials (x′y)s: the
bigger R, the smaller is the relative weight of higher order monomials. If R ≈ 0, then
only (x′y)p – the monomial with maximum power – counts.

Gaussian kernel. Let X = Rd. Gaussian kernel or RBF kernel is (4.5.17), i.e.

K(x, y) = exp[−‖x− y‖2

2σ2
].

Classifier (4.5.2) is

sign
(∑

i∈SV

α∗i yi exp[−‖xi − x‖2

2σ2
] + w∗

o

)
,

so that the classification is based on the surface
{

x :
∑
i∈SV

α∗i yi exp[−‖xi − x‖2

2σ2
] = −w∗

o

}
.

Exercise: Prove that any Φ corresponding to Gaussian kernel satisfies Φ : X 7→ SH,
where SH is unit sphere on H.
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Gaussian kernel has the following important property: for any finite subset {x1, . . . , xn} ⊂
Rd, the corresponding Gram matrix K has full rank ([12], Thm 2.18). From this follows
that for any sample where xi 6= xj if i 6= j, and for any Φ associated to Gaussian kernel,
the sample in the Hilbert space

(Φ(x1), y1), . . . , (Φ(xn), yn) (4.5.19)

is linearly separable. Let us show this. Since Gram matrix has full rank, its columns form
a base in Rn. Hence, to every vector of labels (y1, . . . , yn) there exist constants w1, . . . wn

so that
n∑

j=1

wjK(xi, xj) =
n∑

j=1

wj〈Φ(xi), Φ(xj)〉 = 〈
n∑

j=1

wjΦ(xj), Φ(xi)〉 = yi.

Since f :=
∑n

j=1 wjΦ(xi) ∈ H, we obtain that the hyperplane H := {g ∈ H : 〈g, f〉 = 0}
separates (4.5.19). In other words it means that Gaussian kernel induces so large class
of (non-linear) classifiers on Rd that every sample (without repetitions) can be correctly
classified. This means that the VC-dimension of the corresponding set of classifiers is
infinite. Let us remark that VC-dimension of the set of classifiers induced by polynomial
kernel is finite.
Hence for Gaussian kernel theoretically hard-margin SVM classification can be used. But
this typically means overfitting. To avoid overfitting, the box constraints or 2-norm soft
margin SVM-classification is used.
The parameter σ controls the flexibility of the kernel in a similar way to the degree p in
the polynomial kernel – small values of σ correspond to large values of p so that given
some additional (say box) constraint, the class of classifiers is more complex for smaller
σ. The Gram matrix has full rank for any σ, but given some additional constraints that
prevent overfitting, the parameter σ affects the performance of resulting classifier.

Polynomial kernel and Gaussian kernel are probably most commonly used kernels in case
X = Rd. Let us note that there are many other kernels similar to polynomial kernels (e.g
all-subsets kernels or ANOVA kernels), see [11], Ch 9.

Kernels for texts

The advantage of kernel methods is that the set X can be arbitrary so that the methods
apply for very large class of problems. As an example, we briefly examine some commonly
used kernels for classifications of documents (texts). Document classification is often ref-
ereed to as categorization .

The kernels are derived from the representation of text. A commonly used representation
is so-called vector space model or bag of words approach . Let W = {w1, . . . , wm}
be a finite dictionary. A dictionary can be given, in practice it typically consists of all
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words from a set of documents typically referred to as corpus. Let T ∈ W ∗ be a text
(document) and define

Φ(T ) =
(
Φw1(T ), . . . , Φwm(T )),

where Φw(T ) is the frequency of the word w in the text T . Thus every text is represented
as a very long vector, where most of the entries are zero. In other words, a text is
considered as a bag of words, where a bag is a set in which repeated elements are allowed
(even simpler approach would be to ignore the repetitions). Kernel is then

K(T1, T2) = 〈Φ(T1), Φ(T2)〉l2 =
∑

w

Φw(T1)Φw(T2) = Φ′(T1)Φ(T2).

Although the vectors are very long having often more entries than the sample size, it
turns out that since the representation is extremely sparse (most of the entries are zero)
the computation of inner product K(T1, T2) can be implemented in a time proportional
to the sum of the lengths of two documents

O(|T1|+ |T2|).
The process allowing to compute the inner product with such a low cost is known in
computer science as tokenisation.

Weighting. In order to incorporate sematic into a kernel, the first step is to apply
different weights the every word. For instance to assign zero-weight to non-informative
words like "and", "of", "the" and so on. These words are often referred to as stop words.
With µ(w) being the weight of the word w, we get

Φ(T ) =
(
Φw1(T )µ(w1), . . . , Φws(T )µ(ws)),

so that the kernel is

K(T1, T2) =
∑

w

µ2(w)Φw(T1)Φw(T2) = Φ′(T1)R
′RΦ(T1),

where R is a diagonal matrix with entries µ(w) on the diagonal. In other words, the
vector Φ is replaced weighted vector RΦ.
A possibility for µ(w) is the so called inverse document frequency of the word w. Suppose
there are n documents in the corpus and let df(w) be the number of documents containing
the word w. The weight of inverse document frequency is then

µ(w) := ln(
n

df(w)
).

Hence, if the word w is in every text, then µ(w) = 0. The use of the logarithmic func-
tion ensures that none of the weights can become too large relative to the weight of a
word that occurs in roughly halve of the documents. Note that with inverse document
frequency weights, the evaluation of kernel involves both frequencies Φw(T ) as well as
inverse document frequencies. It is therefore often referred to as the tf-idf representation.
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Proximity matrix. The tf-idf representation implements a downweighting of irrele-
vant terms as well as highlighting potentially informative ones, but it is not capable of
recognizing semantically related words like synonyms. To incorporate the semantic simi-
larity, the proximity matrix P =

(
P (w,w′)

)
w,w′∈W

is introduced. In the proximity matrix,
P (w, w) = 1, whereas the off-diagonal entry P (w, w′) > 0, if the words w and w′ are se-
mantically related. The linear transformation P is applied to weighted vector RΦ(T )
so that the new vector is Φ∗(T ) = PRΦ(T ). The vector Φ∗(T ) is less sparse then the
weighted vector RΦ(T ). With Q = (RP )′PR, the kernel is now

K(T1, T2) =
∑

w

Φw(T1)Φ
∗
w(T2) = Φ′(T1)R

′P ′P RΦ(T2) = Φ′(T1)QΦ(T2).

References: About the properties of kernels, polynomial, Gaussian and related kernels,
see [11], Ch 9, [12], Ch 13 and 2. About kernels for text, see [11], Ch 10. About kernels
for other types of data (strings, sets, generative models), see [11], Ch 11, Ch 9, Ch 12.

4.6 Regression with kernels
Most of linear methods of multivariate analysis have their kernel counterparts. For exam-
ple, there exists kernel principal component analysis (Kernel PCA, see [11], Ch 6 or [12],
Ch 14) and kernel version of Fisher discriminant analysis (Kernel FDA, see [12], Ch 15;
[11] Chs 5, 6; [13]). In the following we briefly introduce the kernel regression methods.

4.6.1 Ridge and lasso regression

In regression, the data are (x1, y1), . . . , (xn, yn), where xi ∈ Rd, yi ∈ R. We know that in
ordinary least squares the parameters ŵ ∈ Rd and â ∈ R are the solution of the following
problem:

min
w,a

n∑
i=1

(
yi − (w′xi + a)

)2
. (4.6.1)

We also know that (recall (3.6.8) and replace expectations with sample average)

ŵ = Σ̂−1
( 1

n

n∑
i=1

xiyi − ȳx̄
)
, â = ȳ − ŵ′x̄.

With

Z :=




x1
1 − x̄1 x2

1 − x̄2 · · · xd
1 − x̄d

x1
2 − x̄1 x2

1 − x̄2 · · · xd
1 − x̄d

· · · · · · · · · · · ·
x1

n − x̄1 x2
n − x̄2 · · · xd

n − x̄d


 ,

we have
1

n

n∑
i=1

xiyi − ȳx̄ =
1

n
Z ′(y − ȳ), Σ̂ =

1

n
Z ′Z,
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so that
ŵ = (Z ′Z)−1Z ′yo, where yo = y − ȳ.

Ridge regression. When Σ̂ is not invertible, several alternatives are used. A popular
method is ridge regression , where instead (4.6.1) the problem is minimized:

min
w,a

n∑
i=1

(
yi − (w′xi + a)

)2
+λ‖w‖2, (4.6.2)

where λ > 0. Hence ridge regression prefers the smaller coefficients. Alternatively, the
ridge regression problem can be defined as follows

min
w,a

n∑
i=1

(
yi − (w′xi + a)

)2 (4.6.3)

subject to ‖w‖ ≤ B.

Exercise: Show that to every λ, there corresponds a B < ∞ (depending on the data) so
that the solution of (4.6.3) is the same as the solution of (4.6.2). (Hint: take B = ‖ŵ‖)

The solutions of (4.6.2) are easy to find:

ŵ =
(
Z ′Z + λId

)−1
Z ′yo, â = ȳ − ŵ′x̄. (4.6.4)

The matrix Z ′Z + λId is invertible even if Z ′Z is not.

Exercise: Prove (4.6.4). Hint: use centering and proceed as follows.

1. Replace xi by zi = xi − x̄ and show that the solutions v̂ and b̂ of

min
v,b

n∑
i=1

(
yi −

(
v′zi + b

))2

+λ‖v‖2. (4.6.5)

are related to the solutions of (4.6.2) as follows: ŵ = v̂ and â = b̂− x̄′v̂.

2. To find b̂, replace y by yo = y − ȳ and reformulate (4.6.5) as follows

min
v,b

n∑
i=1

(
yo

i −
(
v′zi + (b− ȳ)

))2

+λ‖v‖2. (4.6.6)

Then show that b̂ = ȳ.

3. To find v̂, it suffices now to consider the problem

min
v

n∑
i=1

(
yo

i − v′zi

)2
+λ‖v‖2 = min

v∈Rd
〈yo − Zv, yo − Zv〉+ λv′v (4.6.7)

and show that its solution is

v̂ =
(
Z ′Z + λId

)−1
Z ′yo.
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Theoretical reasonings for ridge regression

1. Typically d is big and the regression tries to select the features that are important in
regression. In ridge regression this goal is tried to achieve via penalizing the sum of
squares of coefficients. When some features are not related to the response variable,
then corresponding coefficients tend to be small.

2. Let ŷ(xo) = ŵ′xo + â be the prognose at xo, and let f(xo) = E[Y |X = xo]. It is easy
to see that the following decomposition of mean square error holds

E
[(

Y − ŷ(xo)
)2|X = xo

]
=

E
[
(Y − f(xo))

2|X = xo

]
+

(
f(xo)− Eŷ(xo)

)2
+ E

(
ŷ(xo)− Eŷ(xo)

)2
.

It can be shown that increasing λ decreases the variance E
(
f̂(xo) − Eŷ(xo)

)2 and
increases the bias. Hence λ controls the so-called bias-variance tradeoff.

3. Matrix (Z ′Z + λI) is always invertible, even if Z ′Z is not.

Lasso regression. In lasso regression (Tibshirani, 1996), the problem is

min
w,a

n∑
i=1

(
yi − (w′xi + a)

)2
+λ

∑
i

|wi|. (4.6.8)

As in case of ridge regression, for some B (depending on λ and the data) the problem
(4.6.8) can be written

min
w,a

n∑
i=1

(
yi − (w′xi + a)

)2 (4.6.9)

subject to‖w‖1 ≤ B.

Hence the difference between lasso and ridge regression is in the penalty term – in ridge
regression, the size of ŵ is measured in 2-norm, whereas in lasso regression the size of
ŵ is measured in 1-norm. It turns out that this difference is essential – due to the non-
smoothness of l1-norm, the solution of (4.6.8) is typically much sparser (having more
zero’s) than the one of ridge regression. Therefore, lasso regression in often preferred over
ridge regression, since the the number of selected features are smaller. On the other hand,
because of the non-smoothness of l1-norm, the solution of (4.6.8) is not known analytically
and has to find iteratively. In [14], so called LARS-software is introduced.

References: About ridge and lasso regression read [7].
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4.6.2 Kernel ridge regression

Because of the kernel trick, the ridge regression is suitable for kernel methods. To start
with, let us rewrite the obtained solutions in terms of kernels. At first note: when the
feature vectors xi are centered (as the columns of Z-matrix) and Φ is identity, then Gram
matrix Ko (the o in notation reflects the centering) is Ko = ZZ ′ and the scatter matrix
is S = Z ′Z. Since Ko is n × n matrix and S is d × d matrix then in classical multivari-
ate analysis, where d is typically much smaller than n, the main object is the scatter or
covariance matrix. In kernel methods, however, d is typically very large, perhaps infinity,
so that the Gram matrix becomes the main object of analysis. Note that when d > n,
the S is not invertible, whilst Ko can be.

Let us re-examine the solutions of ridge regression (4.6.4). We know that

ŵ =
(
Z ′Z + λId

)−1
Z ′yo.

Exercise: Prove that ŵ = Z ′α∗, where

α∗ = λ−1(yo − Zv̂) = (Ko + λIn)−1yo.

Recall that ŵ is also the solution of centered problem (4.6.5). Because of the Representer
theorem, we know that the solution ŵ can be written in the form

ŵ =
∑
i=1

α∗i zi = Z ′α∗, α∗ ∈ Rn

so that the exercise above is not surprising. We can thus search the solution w in the
form w = Z ′α so that w′w = α′Koα and the problem (4.6.7) is

min
α
〈yo −Koα, yo −Koα〉+ λα′Koα. (4.6.10)

Setting the gradient with respect to α equal to zero, one gets

Ko
(
(Ko + λIn)α− yo

)
= 0.

If Ko is not invertible, then there might be more than one α satisfying the equality above.
However, for any such α,

Z ′((Ko+λIn)α−yo
)

= 0 ⇒ Z ′(Ko+λIn)α = Z ′ZZ ′α+λZ ′α = (S+λId)Z
′α = Z ′yo.

Since (S + λId) is invertible, we get that all such α define unique Z ′α that is equal to
Z ′α∗, where

α∗ = (Ko + λIn)−1yo.

As mentioned, when d > n, the matrix S is not invertible, the matrix Ko might be.
Suppose for a moment that this is the case, and λ = 0. Then the problem is OLS-
regression. Then α∗ = (Ko)−1yo and applying ŵ to the set of feature vectors, we get

ŷ′ = ŵ′Z ′ = α∗′ZZ ′ = (yo)′(Ko)−1ZZ ′ = yo′

so that the regression hyperplane passes all data point – clear overfitting. Hence, do-
ing regression in the high-dimensional spaces some regularization is inevitable and ridge
regression is one easy applicable option.
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Ridge regression with Lagrange method. For big n, finding (Ko +λIn)−1 might be
difficult. Let us restate the problem as the problem of constrained optimization. Solving
the dual problem with some iterative methods can be easier than directly calculating the
inverse matrix. With the help of slack variables, the problem (4.6.10) is

mina,ξ,α λα′Koα + ‖ξ‖2 (4.6.11)
subject to Koα = yo − ξ.

Lagrangian:
L(α, ξ, γ) = λα′Koα + ‖ξ‖2 + γ′(yo −Koα− ξ).

The derivatives with respect to the primal variables

∇αL(α, ξ, γ) = 2λKoα− γ′Ko = 0 ⇒ Koα =
1

2λ
Koγ.

∇ξL(α, ξ, γ) = 2ξ − γ = 0 ⇒ ξ =
1

2
γ.

Hence
α′Koα =

1

2λ
α′Koγ =

1

2λ
γ′Koα =

1

4λ2
γ′Koγ, ‖ξ‖2 =

1

4
γ′γ

and plugging these formulas into Lagrangian, we obtain

θ(γ) = γ′yo − 1

4λ
γKoγ − 1

4
γ′γ = γ′yo − 1

4λ
γ′

(
Ko + λIn

)
γ

so that the dual problem is

max
γ

γ′yo − 1

4λ
γ′

(
Ko + λIn

)
γ. (4.6.12)

If Ko is invertible, then (4.6.11) has unique solution α∗ = 1
2λ

γ∗, where γ∗ is the solution
of dual. Otherwise there might be many α∗ satisfying equality

Koα∗ =
1

2λ
Koγ∗,

but the corresponding weight vector ŵ = Z ′α∗ is for all of them equal to

ŵ =
1

2λ
Z ′γ∗.

KKT:
yo

i −
∑

j

Ko
ijα

∗
j = ξ∗i =

γ∗i
2

.

Hence,
γ∗i = 0 ⇔ yo

i =
∑

j

Ko
ijα

∗
j . (4.6.13)
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Mapping Φ. Let Φ : X → H. The transformed sample in Hilbert space H is

(Φ(x1), y1), . . . , (Φ(xn), yn).

Kernel ridge regression problem is

min
w∈H,a∈R

n∑
i

(
yi − (〈w, Φ(xi)〉+ a)

)2
+ λ‖w‖2. (4.6.14)

Centering in space H. Just like in Rd, we can use centering. But now the centering has
to be carried out in H. Hence, let ΦS be the average of Φ(x1), . . . , Φ(xn), i.e.

ΦS =
1

n

n∑
i=1

Φ(xi).

Let the centered mapping be

Φo : X → H, Φo(x) = Φ(x)− ΦS, i = 1, . . . , n

and let Ko be the centered Gram matrix, i.e. Ko is n× n matrix with the entries

Ko
ij :=: Ko(xi, xj) = 〈Φo(xi), Φ

o(xj)〉 = 〈Φ(xi), Φ(xj)〉 − 〈Φ(xi), ΦS〉 − 〈ΦS, Φ(xj)〉+ 〈ΦS, ΦS〉

= K(xi, xj)− 1

n

n∑

k=1

K(xi, xk)− 1

n

n∑

k=1

K(xk, xj) +
1

n2

∑
i,j

K(xi, xj).

Thus, from the original Gram matrix K, the matrix Ko can be obtained by simple trans-
formation

Ko = K − 1

n
K11′ − 1

n
11′K +

1

n2
1′K1, (4.6.15)

where 1 is vector consisting of ones.

After centering the transformed features and response vector, we get (as previously) that
the solutions of (4.6.14) are â and ŵ, where

â = ȳ − 〈v̂, ΦS〉, ŵ = v̂

and v̂ is the solution of the following problem

min
v∈H

n∑
i

(
yo

i − 〈v, Φo(xi)〉
)2

+ λ‖v‖2.

Without loss of generality, we can take H as RKHS, so that Representer theorem applies
and

v̂ =
∑

i

α∗i Φ
o(xi),
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where α∗ is the solution of the problem (4.6.10):

min
α∈Rn

〈
yo −Koα, yo −Koα〉+ λα′Koα.

We already know that a solution is

α∗ = (Ko + λIn)−1yo

and all others (if they exists) define the same v̂. We also know that (4.6.10) can be
reformulated as a constrained optimization problem (4.6.11) and all solutions (if not
unique) of it are equivalent (i.e. giving the same w) to α∗ = 1

2λ
γ∗, where γ∗ is the solution

of (4.6.12). With α∗, the optimal constant is

â = ȳ − 〈v̂, ΦS〉 = ȳ − 〈
∑

j

α∗jΦ
o(xj), ΦS〉 = ȳ − 〈

∑
j

α∗jΦ(xj), ΦS〉 − (
∑

j

α∗j )〈ΦS, ΦS〉

= ȳ − 1

n
1′Kα∗ − (1′α∗)〈ΦS, ΦS〉 = ȳ − 1

n
1′Kα∗ − (1′α∗)

n2
1′K1.

For any x ∈ X , the prognose is

ŷ := 〈w∗, Φ(x)〉+ â =
∑

i

α∗i K(x, xi) + â.

Support vectors. Recall the equality (4.6.13): if α∗i = 0, then

yo
i =

∑
j

Ko
ijα

∗
j = 〈w∗, Φo(xi)〉,

i.e. the coefficient α∗i can be zero zero only if the pair (Φo(xi), y
o
i ) lies on the regression

hyperplane. When λ > 0, this is rather untypical, hence most of the coefficients α∗i are
not zero, i.e. in terms of support vectors, most of xi are support vectors.

4.6.3 ε-insensitive regression

We saw the the the solution of ridge regression ŵ =
∑

i α
∗
i Φ(xi) is typically not sparse, i.e.

mostly α∗i 6= 0. To obtain sparser solutions, several alternatives are used. One of them is
ignoring the errors that are smaller than a certain threshold ε > 0. For this reason the
band around the true output is sometimes referred to as a ε-tube.

Formally, let ε > 0 be fixed and for any pair y, f(x) ∈ R define ε-insensitive p loss as
follows

|y − f(x)|pε , where |y − f(x)|ε := max{0, |y − f(x)| − ε}.
Hence (|y − f(x)|ε)p = 0 iff |y − f(x)| ≤ ε.

Typically p = 1 or p = 2, and both cases are combined with ridge regression.
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The case p = 2. When p = 2, we obtain a generalization of kernel ridge regression
problem as follows

min
w∈H,a∈R

n∑
i=1

|yi − (〈w, Φ(xi)〉+ a)|2ε + λ‖w‖2. (4.6.16)

Considering this as a constrained optimization problem and searching solution in form∑
i αiΦ(xi), we obtain the following primal problem (in matrix form)

mina,ξ,α λα′Kα + ‖ξ+‖2 + ‖ξ−‖2 (4.6.17)
subject to Kα + a1− y ≤ ξ− + ε1

y −Kα− a1 ≤ ξ+ + ε1.

Since for ε > 0, the ε-insensitive loss is not any more quadratic, we cannot benefit for
centering and find the constant separately. Hence, in (4.6.17), the original Gram matrix
K and vector y are used, the constant a will be later determined via KKT conditions.

The dual of that problem is (recall (4.6.12))

maxγ γ′y − 1

4λ
γ′

(
K + λIn

)
γ−ε‖γ‖1 (4.6.18)

subject to 1′γ = 0.

With γ∗ being the solution of (4.6.18), the solutions of (4.6.17) and (4.6.16) are

α∗ =
1

2λ
γ∗, ŵ =

∑
i

α∗i Φ(xi).

From KKT conditions, it follows that when γ∗i 6= 0, then

yi −
∑

j

Kijα
∗
i − a∗ = yi − 〈w∗, Φ(xi)〉 − a∗ =

{
γ∗i
2

+ ε, when γ∗i > 0;
γ∗i
2
− ε, when γ∗i < 0;

(4.6.19)

These relations can be used to found the optimal a∗. From (4.6.19), it also follows that

|yi − (
∑

j

Kijα
∗
i + a∗)|ε = |yi − (〈w∗, Φ(xi)〉+ a∗)|ε =

|γ∗i |
2

.

Hence the support vectors (xi such that α∗i 6= 0) are all features xi such that (yi, Φ(xi))
is located outside the ε-tube of regression hyperplane.
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The case p = 1. Then the problem is

min
w∈H,a∈R

n∑
i=1

|yi − (〈w, Φ(xi)〉+ a)|ε + λ‖w‖2. (4.6.20)

Considering this as a constrained optimization problem and searching solution in form∑
i αiΦ(xi), we obtain the following primal problem

mina,ξ,α λα′Kα + ‖ξ+‖1 + ‖ξ−‖1

subject to Kα + a1− y ≤ ξ− + ε1

y −Kα− a1 ≤ ξ+ + ε1

ξ+ ≥ 0, ξ− ≥ 0.

Again, the solution α∗ satisfies

α∗ =
γ∗

2λ
,

where γ∗ is the solution of the dual problem

maxγ − 1

4λ
γ′Kγ + γ′y−ε‖γ‖1

subject to γ′1 = 0

|γi| ≤ 1, ∀i.

Note that we encounter the box constraints again: |α∗i | ≤ 1
2λ
, and as in the case of support

vector classification, |α∗i | = 1
2λ
, when (yi, Φ(xi)) is outside of the ε-tube.

The in-bound support vectors, again, are those sample elements, for which

|α∗i | ∈
(
0,

1

2λ

)
.

From KKT conditions, it follows that for an in-bound support vector xi, it holds

yi −
∑

j

Kijα
∗
i − a∗ = yi − 〈w∗, Φ(xi)〉 − a∗ =

{
ε, when γ∗i > 0;
−ε, when γ∗i < 0. (4.6.21)

These relations can be used to found the optimal a∗, and they show that every in-bound
support vector xi is such that (yi, Φ(xi)) lays exactly on the boundary of ε-tube.

References: About regression with kernels, read [11], Ch 7.3; [12], Ch 9; [10], Ch 6.
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Chapter 5

Boosting

Assumption: Two classes, labeled as +1 and −1.

5.1 Risk and φ-risk
Recall soft margin classification problem:

min
w∈H,wo

1

2
‖w‖2 + C

n∑
i=1

(
1− yi

(
w(xi) + wo

))p

+
, (5.1.1)

where H is a RKHS, p is 1 or 2. As in the case of regression, there exists a constant B,
depending on the data so that the solution of (5.1.1) is the solution of the problem

min
w,wo:‖w‖≤B

1

n

n∑
i=1

(
1− yi

(
w(xi) + wo

))p

+
. (5.1.2)

Indeed, let w∗ and w∗
o be the solutions of (5.1.1) and take B = ‖w∗‖. Let us show that

the pair w∗ and w∗
o is also the solution of (5.1.2). If not, there would be a pair w and wo

such that ‖w‖ ≤ B and

1

n

n∑
i=1

(
1− yi

(
w(xi) + wo

))p

+
<

1

n

n∑
i=1

(
1− yi

(
w∗(xi) + w∗

o

))p

+
.

That would contradict the assumption that w∗ and w∗
o are the solutions of (5.1.1).

Let for any B > 0

FB := {fw,wo : ‖w‖ ≤ B}, where fw,wo : X → R, fw,wo(x) = w(x) + wo.

Hence the problem (5.1.2) is

min
f∈FB

1

n

n∑
i=1

(
1− yif(xi)

)p

+
= min

f∈FB

1

n

n∑
i=1

φ
(
yif(xi)

)
, (5.1.3)
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where
φ(t) = (1− t)p

+.

Hence SVM-classification is one of the many methods that aims to maximize functional
margins yif(xi) via minimizing the empirical φ-risk

1

n

n∑
i=1

φ
(
yif(xi)

)

for a non-increasing function φ over a class of functions F . If n is big enough, then the
sample average is close to the expectation so that the empirical φ-risk is close to φ-risk :

Rφ(f) := Eφ(Y f(X)) =

∫
φ(yf(x))dF (x, y)

and, therefore, minimizing empirical φ-risk over F can be considered ERM (empirical risk
minimization) method for minimizing unknown (because F (x, y) is not known) φ risk Rφ.

Why φ risk? Recall that for any f ∈ F , our primal interest is the classifier

g(x) = sgnf(x)

and the objective is to select f so that the risk

R(g) = P(Y 6= g(X)) = P(Y 6= sgn(f(X)) =: R(f)

would be as small of possible. Therefore, the natural question arises: how are the risks
Rφ(f) and R(f) connected? In particular, if R∗

φ is a minimum of φ-risk over all functions
and Rφ(f) is close to R∗

φ, then does it imply that R(f) is close to Bayes risk R∗?

The last question is easy to answer in a special case when φ satisfies the (rather nat-
ural) condition

φ(t) ≥ I{t≤0}, ∀t. (5.1.4)

Then for every f it holds R(f) ≤ Rφ(f). Hence, if (5.1.4) holds and Rφ(f) is close to zero,
then also R(f) is close to zero. But Bayes risk being close to zero is more an expectation
as a rule, and general case needs further analysis.

Classification-calibrated φ. From now on, let us denote

η(x) := P(Y = 1|X = x) = p(1|x).

Hence Bayesi classifier is
g∗(x) = sgn(η(x)− 0.5).

For any f the φ-risk is, thus

Rφ(f) = E
(
E[φ(Y f(X))|X]

)
= E

(
φ(f(X))η(X) + φ(−f(X))(1− η(X))

)
.
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Just like in case of (classification risk) R(g), in order to minimize φ-risk over all possible
functions, we have to minimize conditional φ-risk

E
[
φ(Y f(X))|X = x] = η(x)φ(f(x)) + φ(−f(x))(1− η(x))

over all possible values of f(x), hence over R. Since the minimization depends on x via
η(x), we can fix η ∈ [0, 1]. The minimal conditional φ-risk given η is thus

H(η) := inf
r∈R

(
ηφ(r) + φ(−r)(1− η)

)

and
R∗

φ := inf
f

Rφ(f) = E
(
H(η(X))

)
.

Define
r(η) := arg min

r∈[−∞,∞]

(
ηφ(r) + φ(−r)(1− η)

)

Hence the function
f ∗(x) := r(η(x))

minimizes φ-risk over all functions. Hence f ∗(x) is the best function in the sense of φ-
risk. But is it the best in the sense of classification? In other words, is sgnf ∗(x) the
Bayes classifier? From the definition of f ∗(x), it follows that this is so, when the following
condition is fulfilled

sgn(r(η)) = sgn(η − 0.5), ∀η 6= 0.5. (5.1.5)

The condition (5.1.5) presupposes the existence and uniqueness of r. Therefore, it is
usually restated as follows

H−(η) > H(η), ∀η 6= 0.5, (5.1.6)

where H−(η) is the minimum of r 7→ ηφ(r) + φ(−r)(1 − η) over these arguments that
have different sign as (2η − 1). Formally

H−(η) := inf
r∈R:r(2η−1)≤0

(
ηφ(r) + φ(−r)(1− η)

)
.

Clearly H−(η) ≥ H(η). Also note that the functions H and H− depend on φ, only. This
justifies the following definition

Definition 5.1.1 If (5.1.6) holds, then the function φ is classification-calibrated .

Note: if for any η, there exists (possibly not unique) r(η), then (5.1.6) guarantees that
any such r(η) satisfies (5.1.5).
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Exercise:

• Prove that H−(1
2
) = H(1

2
).

• Prove that H : [0, 1] → R+ is concave and symmetric with respect to 0.5, i.e.

H(η) = H(1− η).

Hence H(η) ≤ H(0.5).

• Prove that H− : [0, 1] → R+ is symmetric with respect to 0.5, i.e.

H−(η) = H−(1− η).

• Prove that H− is concave in [0, 1
2
] and in [1

2
, 1].

• Prove that if φ is convex, then H(1
2
) = φ(0).

For every φ, thus H(η) ≤ H(0.5). It can be shown ([15], Lemma 4) that when φ is
classification-calibrated, then the inequality is strict for η 6= 0.5, i.e. if φ is classification-
calibrated, then

H(η) < H(0.5), ∀η 6= 0.5. (5.1.7)

Examples.

• Let φ(t) = (1− t)+. Then the function

η(1− r)+ + (1− η)(1 + r)+

achieves the minimum at +1 or at −1. Hence

H(η) = 2 min(η, 1− η), r(η) =

{
1, if η > 0.5;
−1, if η < 0.5.

Show that H−(η) = 1. Thus φ is classification calibrated.

• Exercise: Let φ(t) = (1− t)2
+. Prove that

H(η) = 4η(1− η), r(η) = 2η − 1.

Is φ classification-calibrated?

• Exercise: Let φ(t) = exp[−t]. Prove that

r(η) =
1

2
ln

( η

1− η

)
, H(η) = 2

√
η(1− η).

Is φ classification-calibrated?

• Exercise: Let φ(t) = I(−∞,0]. Prove that

H(η) = min(η, 1− η), H−(η) = max(η, 1− η).

Is φ classification-calibrated?
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Convex φ. The following statement gives an easy criterion to check whether φ is
classification-calibrated for convex φ. For the proof, see [15], Lemma 5.

Proposition 5.1.1 A convex φ is classification-calibrated if and only if φ′(0) < 0.

Corollary 5.1.1 Let φ be convex and classification-calibrated. Then, for every η ∈ [0, 1],

H−(η) = φ(0).

Proof. Since φ is convex, it follows ηφ(r) + (1− η)φ(r) ≥ φ(r(2η − 1)). Hence

min
r:r(2η−1)≤0

(
ηφ(r) + φ(−r)(1− η)

) ≥ min
r:r(2η−1)≤0

φ(r(2η − 1)
)

= min
u≤0

φ(u) = φ(0),

since φ′(0) < 0 implies that φ is decreasing in (−∞, 0]. It follows that H− = φ(0).

The function ψ. Let ψ : [0, 1] → R+,

ψ(t) := H−(
1 + t

2
)−H(

1 + t

2
)

Properties of ψ:

• ψ(t) ≥ 0;

• ψ(0) = 0;

• ψ is continuous, since H and H− are continuous (concave and piecewise concave).

If φ is convex and classification-calibrated, then by Corollary 5.1.1, H−(η) = φ(0), hence

ψ(t) = φ(0)−H(
1 + t

2
)

Hence, if φ is convex and classification-calibrated, then (in addition to the previous prop-
erties):

• ψ is convex (since H(1+t
2

) is concave);

• ψ(t) > 0 iff t > 0 (follows from (5.1.7)).

Examples.

• Let φ(t) = (1− t)+. Then H(η) = 2 min{η, 1− η}

ψ(t) = φ(0)−H(
1 + t

2
) = 1− 2 min(

1 + t

2
, 1− 1− t

2
) = 1− (1− t) = t,

• Let φ(t) = (1− t)2
+. Then H(η) = 4η(1− η)

ψ(t) = φ(0)−H(
1 + t

2
) = 1− 4(

1 + t

2
)(

1− t

2
) = 1− (1− t2) = t2.
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• Let φ(t) = exp[−t]. Then H(η) = 2
√

η(1− η),

ψ(t) = 1− 2

√
(
1 + t

2
)(

1− t

2
) = 1−

√
1− t2.

• Let φ(t) = I(−∞,0]. Then H(η) = min(η, 1− η), H−(η) = max(η, 1− η) and

ψ(t) =
1 + t

2
− 1− t

2
= t.

The importance of ψ will be apparent from the following theorem (for the proof, see [15],
Thm 3) that relates the φ-risk to the classification risk.

Theorem 5.1.2 (Bartlett, Jordan, McAuliffe, 2004) Let φ be convex and classification-
calibrated. Then for every f

ψ
(
R(f)−R∗) ≤ Rφ(f)−R∗

φ (5.1.8)

The theorem is the missing link between φ-risk and classification risk; it follows that for
any sequence fn to prove R(fn) → R∗ (consistency), it suffices to prove the convergence
of φ-risks: Rφ(fn) → R∗

φ, given φ is convex and classification-calibrated. Indeed, ψ is
continuous and if φ is convex and classification-calibrated, then ψ(t) > 0 iff t > 0. Thus
ψ(tn) → 0 implies that tn → 0.

References: About the φ-risk theory, read the papers of P. Bartlett et al., for instance
[15, 16].

5.2 AdaBoost

5.2.1 Boosting and AdaBoost: the principles

Boosting is based on observation that finding many rough rules of thumb can be a lot
easier that finding a single, highly accurate prediction rule. The boosting method starts
with a simple method or rough classifier of thumb called weak or base learner . Each
time t it is called, the weak learner generates a base classifier ht : Rd → {−1, 1} and after
T rounds, the boosting algorithm must combine these base classifiers h1, . . . , hT into a
single prediction rule:

g(x) = sgn
( T∑

t=1

αtht(x)
)
, (5.2.1)

where αt ∈ R are the weights. Finding base classifiers ht is iterative: with the help of ht,
the new sample weights Dt+1(i), i = 1, . . . , n is designed. This new sample is used to train
ht+1 and so on. Although every base classifer can be hardly better than random guess,
their combination (5.2.1) might perform remarkably well.
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First boosting type of algorithms were introduced in the end of 1980.-s (Kearns, Valiant,
Schapire); in 1995, Y. Freud and R. Schapire introduced the most popular and well-known
boosting algorithm called AdaBoost (adaptive boosting).

AdaBoost: Choose a weak learner (the set of base classifiers H).

1. Input: Sample S = (x1, y1), . . . , (xn, yn); the number of iterations T .

2. Initialize: D1(i) = 1
n
, i = 1, . . . , n;

3. Do for t = 1, . . . , T :

a Train a base classifier
ht : X → {−1, 1}

with respect to the weighted sample (S, Dt).

b Calculate the weighted training error:

εt :=
n∑

i=1

Dt(i)I{yi 6=ht(xi)}.

c Set
αt :=

1

2
ln

1− εt

εt

.

d Update the weights

Dt+1(i) :=
Dt(i) exp[−αtyiht(xi)]

Zt

,

where Zt is a normalization constant so that
∑

i Dt+1(i) = 1.

4. Break if εt = 0 or εt ≥ 1
2
; in this case set T = t− 1.

5. Output:

gT (x) := sgn
(
fT (x)

)
, where fT =

T∑
t=1

αtht.

Thus, h1 is trained based on the original sample, because D1(i) = 1
n
. The weight αt of

the base classifier ht is found based on the training error εt. If εt ≤ 0.5, then αt ≥ 0.
The smaller error εt, the bigger weight αt. After training ht and finding αt, new weights
Dt+1(i) are calculated: for every i, the old weight Dt(i) is multiplied by

exp[−αtyiht(xi)] =

{
eαt > 1, if ht misclassifies xi ;
e−αt < 1, if ht classifies xi correctly.

Hence, the misclassified vectors will have larger weight and by training ht+1, these vectors
count more. New weights also depend on αt: the bigger αt i.e. the more correct is ht, the
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bigger is the relative weight of misclassified vectors.

Note that
−yiht(xi) = 2I{yi 6=ht(xi)} − 1,

hence
exp[−αtyiht(xi)] = exp[2αtI{yi 6=ht(xi)}] exp[−αt]

and the new weights can be defined as (e.g. [7])

Dt+1(i) :=
Dt(i) exp[2αtI{yi 6=ht(xi)}]

Zt

. (5.2.2)

5.2.2 AdaBoost and exponential loss

Let us show that AdaBoost minimizes empirical φ-risk over a class F , where

φ(t) = exp[−t] and F :=
{ T∑

t=1

αtht : αt ∈ R, ht ∈ H
}
.

Here H stands for the set of all base-classifiers. The empirical φ-risk is, thus,

1

n

n∑
i=1

exp[−yif(xi)] =
1

n

n∑
i=1

exp[−yi(α1h1(xi) + · · ·+ αT ht(xi))], (5.2.3)

and minimization is over all α1, . . . , αT and h1, . . . , hT .

Minimizing (5.2.3) over all functions in form α1h1 + · · · + αT hT is complicated and Ad-
aBoost uses so-called forward stagewise modeling: at first the function

n∑
i=1

exp[−yiαh(xi)]

is minimized over h1 ∈ H and α1 ∈ R.
On round t, AdaBoost seeks for αt and ht ∈ H such that

(ht, αt) = arg min
α,h

n∑
i=1

exp[−yi(ft−1(xi) + αh(xi))], (5.2.4)

where

ft−1 =
t−1∑
s=1

αshs, f0 = 0.

Hence AdaBoost minimizes (5.2.3) in a greedy manner: at first α1h1 is found, then, given
α1h1, the best α2h2 is found; then, given α1h1 + α2h2, the best α3h3 is found and so on.
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Proof. Let us show this. At fist recall

Dt+1(i) =
Dt(i)

Zt

exp[−αtyiht(xi)], Zt =
∑

i

Dt(i) exp[−αtyiht(xi)].

Thus, for every i,

D1(i) =
1

n
, D2(i) =

exp[−α1yih1(xi)]

nZ1

, D3(i) =
exp[−yi(α1h1(xi) + α2h2(xi))]

nZ1Z2

,

Dt(i) =
exp[−yi(α1h1(xi) + α2h2(xi) + · · ·+ αt−1ht−1(xi))]

Z0Z1 · · ·Zt−1

=
exp[−yift−1(xi)]

Z0Z1Z2 · · ·Zt−1

,

where Z0 := n. Hence

exp[−yift−1(xi)] =
t−1∏
s=0

ZsDt(i) = n

t−1∏
s=1

ZsDt(i). (5.2.5)

From (5.2.5), it follows

n∑
i=1

exp[−yi(ft−1(xi) + αh(xi))] =
n∑

i=1

exp[−yi(ft−1(xi))] exp[−yiαh(xi)]

=
t−1∏
s=0

Zs

( n∑
i=1

Dt(i) exp[−yiαh(xi)]
)
.

Consider the problem

min
α,h

n∑
i=1

Dt(i) exp[−yiαh(xi)]. (5.2.6)

Since
n∑

i=1

Dt(i) exp[−yiαh(xi)] = e−α
∑

i:h(xi)=yi

Dt(i) + eα
∑

i:h(xi)6=yi

Dt(i)

= (eα − e−α)
n∑

i=1

Dt(i)I{yi 6=h(xi)} + e−α

n∑
i=1

Dt(i),

it follows that given α, minimizing (5.2.6) over h is equivalent to minimizing weighted
empirical risk:

min
h∈H

n∑
i=1

Dt(i)I{h(xi)6=yi}. (5.2.7)

Hence the solution does not depend on α, so that if (αt, ht) is the solution of (5.2.6), then

ht = arg min
h∈H

n∑
i=1

Dt(i)I{h(xi)6=yi}. (5.2.8)
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Plugging this ht into (5.2.6) and minimizing over α, one gets easily that

αt :=
1

2
ln

1− εt

εt

. (5.2.9)

Exercise: Prove (5.2.9).

Remark. Hence AdaBoost minimizes empirical φ-risk if the base classifier is obtained
by minimizing (re-weighted) empirical risk, i.e. ht is as in (5.2.8). In its general form,
AdaBoost does not require that, but any other method can be considered as a substitute
of ERM-principle. Often AdaBoost is defined so that ht is obtained via ERM-principle,
i.e. ht is obtained as in (5.2.8).

5.2.3 Empirical risk

Upper bound to empirical risk. Let fT be the outcome of AdaBoost, i.e.

fT = α1h1 + · · ·+ αT hT .

Recall once again
Zt =

∑
i

Dt(i) exp[−αtyiht(xi)]

and recall (5.2.5): for every t ≥ 1,

exp[−yift(xi)] =
t∏

s=0

ZsDt(i) = n

t∏
s=1

ZsDt+1(i).

Hence,

(n
T∏

t=1

Zt) = (n
T∏

t=1

Zt)
∑

i

DT+1(i) =
∑

i

exp[−yifT (xi)],

so that we obtain a nice estimate to empirical risk (training error)

Rn(fT ) =
1

n
|{i : sgn(fT (xi)) 6= yi}| ≤ 1

n

∑
i

exp[−yifT (xi)] =
T∏

t=1

Zt.

The obtained inequality suggests that empirical risk can be reduced most rapidly (in a
greedy way) by choosing αt and ht on each round to minimize

Zt =
∑

i

Dt(i) exp[−αtyiht(xi)],

and this is exactly what AdaBoost does.

Exercise: Prove
Zt = 2

√
εt(1− εt). (5.2.10)
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From (5.2.10), it follows

Rn(fT ) ≤
T∏

t=1

Zt =
T∏

t=1

2
√

εt(1− εt) =
T∏

t=1

√
1− 4u2

t ≤ exp[−2
T∑

t=1

u2
t ], (5.2.11)

where
ut :=

1

2
− εt.

The number ut measures how much ht is better than random guess or majority label rule.
Thus, when

∑∞
t=1 u2

t = ∞, the training error approach to zero meaning that it is zero
eventually. If there exists uo > 0 so that ut ≥ uo for every t, then

Rn(fT ) ≤ e−(2u2
o)T

so that empirical risk drops down exponentially fast. Whether such a uo exists, depends
on sample and the base learner (set H). For example, if H is the set of linear classifiers,
then for any distribution over a training set of distinct points uo > c

n
, where c > 0 is an

universal constant [17, 18].

Upper bound to the proportion of margin errors. Note that AdaBoost algorithm
might not terminate, when empirical risk (training error) is zero. Indeed, Rn(ft) = 0 does
not imply that εt is zero, since εt depends on the base classifier ht, only. Hence AdaBoost
can go on after the training sample is separated. Does it mean overfitting? It turns
out that AdaBoost continues to increase functional margin and, as it will be (partially)
explained in the next section, it does not necessarily mean overfitting.

In AdaBoost, all weights are non-negative, i.e. αt ≥ 0. Hence, the classifier gT = sgnfT

will remain unchanged, if the weights are rescaled so that they sum up to one. Hence, we
can divide fT by the sum

∑T
t=1 αt, and so we define the (functional) margin of fT at pair

(xi, yi), as

ρi(fT ) :=
yifT (xi)∑T

t=1 αt

= yi

( T∑
t=1

βtft(xi)
)
, βt :=

αt∑T
t=1 αt

. (5.2.12)

The next theorem shows how the number of iterations affects the upper bound to the
proportion of margin errors. In the next section, we see how the proportion of margin
errors, in turn, affects the risk bound.

Theorem 5.2.1 Let fT be the output of AdaBoost. Then, for every γ ≥ 0,

1

n
|{i : ρi(fT ) ≤ γ}| ≤

T∏
t=1

2

√
ε1−γ
t (1− εt)1+γ =

T∏
t=1

(1− 2ut)
1−γ

2 (1 + 2ut)
1+γ
2 , (5.2.13)

where ρi(fT ) is defined as in (5.2.12).
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Proof. Note

ρi(fT ) ≤ γ ⇔ yifT (xi)− γ
∑

i

αi ≤ 0 ⇔ exp[γ
∑

i

αi] exp[−yifT (xi)] ≥ 1.

Hence
exp[γ

∑
i

αi] exp[−yifT (xi)] ≥ I(−∞,γ](ρi(fT )) (5.2.14)

Sum both sides of (7.3.24) over i to obtain

exp[γ
∑

i

αi]
1

n

∑
i

exp[−yifT (xi)] ≥ 1

n
|{i : ρi(fT ) ≤ γ}|.

Using (n
∏T

t=1 Zt) =
∑

i exp[−yifT (xi)], one gets

1

n
|{i : ρi(fT ) ≤ γ}| ≤

T∏
t=1

Zt exp[γ
∑

i

αi].

From the definition of αt:
αt =

1

2
ln

1− εt

εt

,

it follows

exp[γ
∑

i

αi] =
T∏

t=1

(1− εt

εt

) γ
2 .

We know that Zt = 2
√

εt(1− εt), so that

T∏
t=1

Zt exp[γ
∑

i

αi] =
T∏

t=1

2
(1− εt

εt

) γ
2
(
εt(1− εt)

) 1
2 =

T∏
t=1

2

√
ε1−γ
t (1− εt)1+γ.

The last inequality in (5.2.13) follows from the definiton of ut: ut = 1
2
− εt.

Remark. With γ = 0, we now get the first inequality of (5.2.11):

Rn(fT ) =
1

n
|{i : sgn(fT (xi)) 6= yi}| ≤ 1

n
|{i : ρi(fT ) ≤ 0}| ≤

T∏
t=1

2
√

εt(1− εt).

5.2.4 Risk bounds for AdaBoost

Let f : Rd → R and recall the quantity An(f) from Subsection 4.3:

An(f) =
1

n

n∑
i=1

φ′(−f(xi)yi), φ′(t) =





1, if t ≥ 0;
1 + t

γ
, if −γ ≤ t ≤ 0;

0, if t < −γ
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Here γ > 0 is fixed. Clearly An(f) is nothing but empirical φ-risk, where φ(t) = φ′(−t).
Also recall that An(f) is upper bounded by the proportion of margin errors Rγ

n(f):

An(f) ≤ 1

n

n∑
i=1

I{f(xi)yi≤γ} = Rγ
n(f).

Our object of interest is the (classification) risk

R(fT ) = P
(
Y 6= sgn(fT )

)
, where fT =

T∑
t=1

αiht is the outcome of AdaBoost.

As explained in the previous section, the classifier sgn(fT ) and hence the risk R(fT )
remains same if the weights αt are normalized so that they sum up to one. Thus, we are
interested in uniform risk bounds to risk R(f) over the class

coT (H) :=
{ T∑

t=1

βtht : βt ≥ 0,
T∑

t=1

βt = 1, ht ∈ H
}

and H is the set of {1,−1}-valued base-classifiers. Note that due to the rescaling, all
functions in F are [−1, 1]-valued.

Perhaps the easiest way to obtain the risk bounds, would be using the VC-dimension
of class of corresponding classifiers

GT := {sgn(f) : f ∈ coT (H)}.
Unfortunately, the VC dimension of GT increases with T . It turns out that using some
more refined methods, the risk bounds that are independent of the number of iterations
T can be found. An example of such a bound is as follows (see [18], Cor 1). The bound
depends on VC-dimension of H and since the set of base-classifiers are simple, the VC-
dimension of H is typically small.
Theorem 5.2.2 Let γ > 0 be fixed. Then, with probability at least 1 − δ (over samples
of length n) every f ∈ coT (H) satisfies

R(f) ≤ An(f) +
8

γ

√
2VH ln(n + 1)

n
+

√
ln 2

δ

2n
, (5.2.15)

where VH is the VC-dimension of H.

Note that for any f ∈ coT (H), the functional margin yif(xi) is ρi(f) so that

An(f) ≤ Rγ
n(f) =

1

n
|{i : ρi(f) ≤ γ}| ≤

T∏
t=1

2

√
ε1−γ
t (1− εt)1+γ =

T∏
t=1

(1−2ut)
1−γ

2 (1+2ut)
1+γ
2 ,

where the last inequality follows from Theorem 5.2.1. Hence, when ut ≥ uo > 0 and γ
is small enough, then quite contra-intuitively, we get a risk bound that decreases in T .
This implies that the risk bound can also decrease after the training error has become
zero. This (partially) explains, why AdaBoost does not encounter overfitting after many
iterations.
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5.2.5 Some insights to (5.2.15)

Rademacher complexity. The central concept for proving bounds like (5.2.15) is a
complexity measure called Rademacher complexity (Rademacher average) . For
a class of functions F from Rd → R, the Rademacher complexity Rn(F) is defined as
follows

Rn(F) := E sup
F

∣∣ 1
n

n∑
i=1

σif(Xi)
∣∣,

where X1, . . . , Xn are iid random feature vectors and σi, i = 1, . . . , n are iid random vari-
ables with law P(σi = 1) = P(σi = −1) = 0.5. The random variables σi and random
vectors Xi, i = 1, . . . , n are independent and the expectation is taken over Xi’s as well as
over σi’s. Some authors e.g. the ones of [11] multiply everything by 2 in the definition of
Rademacher complexity.

If G is class of classifiers Rd → {−1, 1}, then using Rademacher complexity Rn(G),
one gets more refined generalization (risk) bounds as with VC-dimension, namely the
following theorem holds (see. e.g. [4], Thm 5; see also [11], Thm 4.9 or [3], Thm 3.2).

Theorem 5.2.3 Let G be a class of classifiers. For all δ > 0, with probability at least
1− δ

R(g) ≤ Rn(g) +Rn(G) +

√
ln 1

δ

2n
. (5.2.16)

Unfortunately, Rademacher complexity is hard to estimate, hence obtained bound is often
not very practical. Rademacher complexity can be upper bounded by VC-dimension of G
as follows ([3], eq (6))

Rn(G) ≤ 2

√
2V ln(n + 1)

n
. (5.2.17)

Margin bound. The key inequality for large margin bounds is the following bound
([18], Thm 3; [19]; see also [3], Thm 4.1).

Theorem 5.2.4 Let F be the class of functions from Rd → [−1, 1] and let γ ∈ (0, 1). Let
δ > 0. Then with probability 1− δ, every f ∈ F satisfies

R(f) ≤ An(f) +
4Rn(F)

γ
+

√
ln 2

δ

2n
. (5.2.18)

To apply (5.2.18) for the output of AdaBoost, we take F = coT (H) (note that every f in
coT (H) takes values in [−1, 1]). The usefulness of Rademacher complexity bound comes
from the fact that unlike VC dimension, the Rademacher complexity of coT (H) does not
depend on T , moreover, it holds ([18, 20])

Rn

(
coT (H)

)
= Rn(H).
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Hence, Rn(F) in (5.2.18) can be replaced by Rn(H), which, in turn, can now estimate
above by VC dimension of H using (5.2.17). Hence, we get that

Rn(F) = Rn(H) ≤ 2

√
2VH ln(n + 1)

n
.

Plugging the obtained bound into (5.2.18), we obtain (5.2.15).

5.2.6 Consistency of AdaBoost

Using their theory of φ-risk, P. Bartlett and M. Traskin proved that when base learner is
suitable and the number of iterations goes to zero with suitable speed, then AdaBoost is
strongly consistent [21]. An important condition for consistency is that ht is chosen by
using ERM-principle, i.e.

ht = arg min
h∈H

n∑
i=1

Dt(i)I{h(xi)6=yi}.

We already know that in this case ht and αt minimize
n∑

i=1

exp[−yi(ft−1(xi) + αh(xi))]

over α ∈ R and h ∈ H, so that for every t, the function ft = ft−1 + αtht is
n∑

i=1

exp[−yift(xi)] = inf
α,h

n∑
i=1

exp[−yi(ft−1(xi) + αh(xi))].

Hence, with ERM-principle, AdaBoost can be defined as follows.

AdaBoost: Choose a weak learner (the class of base classifiers H).

1. Input: Sample S = (x1, y1), . . . , (xn, yn); the number of iterations T .

2. Initialize: f1 ≡ 0;

3. Do for t = 1, . . . , T define
ft = ft−1 + αtht,

where
n∑

i=1

exp[−yift(xi)] = inf
α∈R,h∈H

n∑
i=1

exp[−yi(ft−1(xi) + αh(xi))].

4. Output:

gT = sgnfT , fT =
T∑

t=1

αtht.
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Let, for a λ > 0,

Fλ :=
{ m∑

i=1

λihi, m = 0, 1, 2, . . . ,
m∑

i=1

λi = λ, hi ∈ H
}
, Gλ := {sgnf : f ∈ Fλ}.

Clearly any output fT ∈ Gλ for some λ. The consistency is proven via the inequality
(5.1.8)

ψ
(
R(fTn)−R∗) ≤ Rφ(fTn)−R∗

φ,

where, φ(t) = exp[−t], ψ(t) = 1−√1− t2 and Tn is suitably chosen. Hence the goal is to
prove the consistency of φ-risks:

Rφ(fTn) → R∗
φ.

For that, the approximation error has to tend to zero, so the following condition is neces-
sary:

lim
λ→∞

inf
g∈Gλ

Rφ(f) = R∗
φ. (5.2.19)

The property (5.2.19) depends on the unknown distribution F (x, y) and on H. For many
classes H, (5.2.19) is satisfied for all possible distributions.

Theorem 5.2.5 (Bartlett, Trashkin, 2007). Assume that the VC dimension of H is
finite, R∗ > 0 and (5.2.19) holds. Let Tn be such that Tn → ∞ and Tn = O(nν), where
ν < 1. Then

R(fTn) → R∗, a.s.,

i.e, the rule {sgn(fTn)} is strongly consistent.

5.3 GradientBoost
AdaBoost uses forward stagewise modeling to minimize empirical φ-risk

Rn
φ(f) =

∑
i

φ(yif(xi))

over a set of functions. Here, φ(t) = exp[−t]. We shall show that another way to look at
AdaBoost is a kind of gradient descent method that at every iteration t looks for ht ∈ H
so that the decrease of the function

α 7→ Rn
φ

( t−1∑
s=1

αshs + αht

)

at 0 were maximal. This can be considered as a coordinate descent method, where the
elements of H are considered as coordinates.
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GradientBoost algorithm. Let us find a ht that for general φ ensures the deepest
gradient descent at 0:

ht = arg min
h∈H

∂Rn
φ

(
ft−1 + αh

)

∂α

∣∣∣
α=0

= arg min
h∈H

∑
i

∂φ
(
yi

(
ft−1(xi) + αh(xi)

))

∂α

∣∣∣
α=0

= arg min
h∈H

∑
i

φ′
(
yift−1(xi)

)
yih(xi)

= arg min
h∈H

−
∑

i

(
2I{yi 6=h(xi)} − 1

)
φ′(yift−1(xi)).

In case φ is decreasing, then −φ′
(
yift−1(xi)) ≥ 0 for every i and in this case ht minimizes

weighted empirical risk

ht = arg min
h∈H

n∑
i=1

Dt
φ(i)I{yi 6=h(xi)},

where
Dt

φ(i) ∝ −φ′
(
yift−1(xi)). (5.3.1)

After finding ht, let us choose the weight αt to minimize

α 7→ Rn
φ

(
ft−1 + αht

)
.

For convex φ, αt is the solution of the equation

∂Rn
φ

(
ft−1 + αht

)

∂α

∣∣∣
αt

=
∑

i

φ′
(
yi

(
ft−1(xi) + αtht(xi)

))
yiht(xi) = 0.

So we get a general boosting algorithm as follows.

GradientBoost: Choose the weak learner (the class of base classifiers H).

1. Input: Sample S = (x1, y1), . . . , (xn, yn); the number of iterations T .

2. Initialize: D1(i) = 1
n
, i = 1, . . . , n;

3. Do for t = 1, . . . , T :

a Train a base classifier
ht : X → {−1, 1}.

with respect to the weighted sample (S, Dt)

b Define
αt := arg min

α∈R
Rn

φ

(
ft−1 + αht

)
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c Update the weights

Dt+1
φ (i) ∝ −φ′

(
yi(ft−1(xi) + αtht(xi))

)
= −φ′

(
yi(ft(xi))

)
.

4. Output:

g(x) := sgn
( T∑

t=1

αtht(x)
)
.

AdaBoost is GradientBoost. Indeed, if φ(t) = e−t, then (5.3.1):

Dt
φ(i) ∝ −φ′

(
yift−1(xi)) = exp[−(

yift−1(xi))]

so that the sample weights are the same as in AdaBoost. The coefficient αt is the solution
of the equation
∑

i

φ′
(
yi

(
ft−1(xi) + αtht(xi)

))
yiht(xi) = −

∑
i

exp[−yi

(
ft−1(xi) + αtht(xi)

)
]yiht(xi)

= −
∑

i

exp[−yift−1(xi)] exp[−yiαtht(xi)]yiht(xi) = 0

Thus the equation for αt is equivalent to the following equation
∑

i

Dt(i) exp[−yiαtht(xi)]yiht(xi) =
∑

i:ht(xi)6=yi

Dt(i)e
αt +

∑

i:ht(xi)=yi

Dt(i)e
−αt

= εte
αt + (1− εt)e

−αt = 0,

and the solution of it is
αt =

1

2
ln

1− εt

εt

.

5.3.1 LogitBoost

If φ(t) = ln(1 + e−t), then empirical φ-risk is

Rn
φ(f) =

∑
i

ln
(
1 + exp[−yif(xi)]

)
(5.3.2)

and it penalizes less large negative margin. In this case

φ′(t) =
−e−t

1 + e−t
=

−1

1 + et
,

so that (5.3.1) is

Dt
φ(i) ∝

1

1 + eyift−1(xi)
.

A boosting algorithm with these weights is known as GradientBoost . Unfortunately,
the weights αt are not analytically known. In the literature the constant weights αt ≡ 1

2

or the ones of AdaBoost are used.
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LogitBoost and logistic regression. Recall logistic regression: given a class F , the
best fit to the ratio

ln
η(x)

1− η(x)

from that class was searched. In section 3.6.2, F was the class of linear functions. If
f ∈ F , then the estimate of unknown η is

ηf (x) =
ef(x)

1 + ef(x)
=

1

1 + e−f(x)
, 1− ηf (x) =

1

1 + ef(x)
. (5.3.3)

In logistic regression, the following conditional likelihood was maximized:
∑

i:yi=1

ln ηf (xi) +
∑

i:yi=−1

ln(1− ηf (xi)) = −
∑

i:yi=1

ln(1 + e−f(xi))−
∑

i:yi=−1

ln(1 + ef(xi))

= −
∑

i

ln
(
1 + exp[−yif(xi)]

)
.

Hence the logistic regression and LogitBoost minimize the same function (5.3.2) or, equiv-
alently, maximize the same conditional likelihood. The difference between two methods
lies in the class F and the methods of minimization. The Newton-Rapshon method tries
to minimize (5.3.2) directly and hence the class F has to be simple. GradientBoost aims
to minimize the objective in a steepest gradient descent way over the class F = spanH.

Exercise: Let φ(t) = ln(1 + exp[−t]) and φ(t) = ln(1 + exp[−2t]). Show that

r(η) = ln
η

1− η
, r(η) =

1

2
ln

η

1− η
.

Sometimes, in LogitBoost, the function φ(t) = ln(1 + exp[−2t]) is used. Hence, the
objective is to minimize ∑

i

ln
(
1 + exp[−2yif(xi)]

)
(5.3.4)

and, according to the Exercise above, it means estimating the following function via
(conditional) maximum likelihood from F :

1

2
ln

η(x)

1− η(x)
.

Estimating η. The goal of boosting in classification is the classifier sgn(fT ). The goal of
logistic regression is more general – estimating η. With fT being the output of LogitBoost
(5.3.2), i.e. with φ(t) = ln(1 + exp[−t]), the estimate of η(x) is as in (5.3.3):

η̂(x) =
efT (x)

1 + efT (x)
=

1

1 + e−fT (x)
, 1− η̂ =

1

1 + efT (x)
.

With fT being the output of LogitBoost (5.3.4), i.e. with φ(t) = ln(1 + exp[−2t]), the
estimate of η is

η̂(x) =
1

1 + e−2fT (x)
. (5.3.5)
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5.4 Regression
The boosting type of algorithms can also be used in regression, where yi ∈ R and the
objective is to minimize the loss function

n∑
i=1

L(yi, f(xi)) (5.4.1)

over a class F . Typically L(y, x) = (y − x)2, and by boosting algorithms

F =
{ T∑

t=1

αtht : ht ∈ H
}
,

where H is a class of simple regression functions. Popular choices are trees (MART – mul-
tiple additive regression trees, Friedman, 2001), splines (componentwise smoothing splines,
Bühlmann, Yu, 2003) or just single coordinates xj (componentwise linear least squares).
When for every α ∈ R and h ∈ H also αh ∈ H, then every f ∈ F is just the sum
h1 + · · ·+hT . In boosting, minimizing (5.4.1) goes in a greedy manner – in t-th iteration,
one looks for the optimal function ht and corresponding coefficient αt to add to the cur-
rent expansion ft−1 := α1h1 + · · ·+ αt−1ht−1 without adjusting previously obtained ft.

Forward stagewise additive modelling

1. Input: Sample S = (x1, y1), . . . , (xn, yn); the number of iterations T .

2. Initialization: f0 ≡ 0;

3. Do for t = 1, . . . , T :

•
(αt, ht) := arg min

αt∈R,ht∈H

n∑
i=1

L
(
yi, ft−1(xi) + αtht(xi)

)
. (5.4.2)

• ft = ft−1 + αtht.

4. Output: f̂ = fT

In L2boosting L(y, x) = (y − x)2. Then
∑

i

L(yi, ft−1(xi) + αtht) =
∑

i

(
yi − ft−1(xi)− αtht(xi)

)2
,

so that at every step of the iteration, the function αtht is the best fit to the residuals of
ft−1: rt−1(xi) = yi − ft−1(xi). It is easy to see that

arg min
α

∑
i

(
rt−1(xi)− αh(xi)

)2
=

∑n
i=1 rt−1(xi)h(xi)∑

i h
2(xi)

so that minimizing (5.4.2) is basically over H, only.
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Boosting and and lasso. Let H be finite, H = {h1, . . . , hK} so that every f ∈ F is
the sum

f =
K∑

k=1

αkhk.

As special case K = d + 1 and hk(x) = xk, k = 1, . . . , d and hK ≡ 1 corresponds to linear
regression.

We consider the regression problem

min
α

[ n∑
i=1

(
yi −

K∑

k=1

αkhk(xi)
)2

+ λJ(α)
]
,

where α := (α1, . . . , αK) and J(α) is a penalty like J(α) =
∑

k α2
k for ridge regression and

J(α) =
∑

k |αk| for lasso. Often K is very big and so regularization is necessary.

We know already that for lasso, finding the optimal vector α is impossible. The fol-
lowing algorithm has shown good performances in approximating the effect of the lasso.

Forward stagewise linear regression

1. Input: Sample S = (x1, y1), . . . , (xn, yn); the number of iterations T ; a small con-
stant ε > 0.

2. Initialize: α0
k = 0, k = 1, . . . , K, f0 ≡ 0;

3. Do for t = 1, . . . , T :

• rt−1(xi) = yi − ft−1(xi);

• (β, l) = arg minβ,l

∑n
i=1

(
rt−1(xi)− βhl(xi)

)2;

• αt
l = αt−1

l + ε · sgn(β), αt
k = αt−1

k , if t 6= l;

• ft =
∑K

k=1 αt
khk

4. Output: f̂ = fT .

Hence T replaces the regularization parameter λ – the more iterations, the bigger
∑

k |αk|.

References: About boosting read [7], Ch 10, or the overview papers [18, 23, 22, 24].
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Chapter 6

Overview of some other methods

Assumption: class-labels are 0 and 1. We consider two classes, but all of the methods
naturally apply for more than two classes.

6.1 Plug-in rules
Recall η(x) = P(Y = 1|X = x) and Bayes rule

g∗(x) =

{
0, if η(x) ≤ 0.5;
1, if η(x) > 0.5.

Let ηn be an estimate of η. Plug-in classifier is defined as follows

gn(x) =

{
0, if ηn(x) ≤ 0.5;
1, if ηn(x) > 0.5. (6.1.1)

For analyzing the performance of plug-in classifiers, the following inequality is useful. For
the proof, see [1], Thm 2.2. Let g be any classifier and F (x) the distribution (function)
of feature vector X. Then

R(g)−R∗ = 2

∫

{g(x)6=g∗(x)}
|η(x)− 1

2
|F (dx), (6.1.2)

If gn is plug-in classifier, then

gn(x) 6= g∗(x) ⇒ |η(x)− 1

2
| ≤ |η(x)− ηn(x)|. (6.1.3)

Plugging (7.2.6) into (6.1.2), we get

Corollary 6.1.1 Let gn be a plug-in classifier based on the estimate ηn. Then

R(gn)−R∗ = 2

∫

{gn(x)6=g∗(x)}

∣∣η(x)− 1

2

∣∣F (dx) ≤ 2

∫
|η(x)− ηn(x)|F (dx). (6.1.4)
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Using Ljapunov (or Cauchy-Schwartz) inequality, we get

R(gn)−R∗ ≤ 2

∫
|η(x)− ηn(x)|F (dx) ≤ 2

√∫ (
η(x)− ηn(x)

)2
F (dx). (6.1.5)

Hence, if ηn is consistent in L2 or in L1 sense, i.e. the integrals above converge to zero,
then the plug-in classifier is consistent. The following picture explains that the above-
mentioned convergences are indeed only sufficient, since for consistency of gn, actually
much less is needed.

Sometimes the probabilities η(x) and 1 − η(x) are estimated separately by η̂1 and η̂0,
so that x they need not definitely sum up to one. The plug-in classifier in this case is

gn(x) =

{
1, if η̂1(x) > η̂0(x);
0, if η̂1(x) ≤ η̂0(x).

Exercise: Let η̂i(x) ∈ [0, 1], i = 0, 1. Prove

R(gn)−R∗ ≤
∫
|η(x)− η̂1(x)|F (dx) +

∫
|(1− η(x))− η̂0(x)|F (dx).

Exercise: Let f1 and f0 the class-conditional densities, π = P(Y = 1). Suppose p̂1 and
p̂0 are the estimates of π and 1 − π, respectively; let f̂i be the estimate of fi. Define a
plug-in classifier

gn(x) =

{
1, if p̂1f̂1(x) > p̂0f̂0(x);
0, if p̂1f̂1(x) ≤ p̂0f̂0(x).

Prove that

R(gn)−R∗ ≤
∫
|πf1(x)− p̂1f̂1(x)|dx +

∫
|(1− π)f0(x)− p̂0f̂0(x)|dx.
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6.1.1 Standard plug-in: parametrization

Suppose class-conditional densities f1 and f0 are known in form: f1(θ1, x) and f0(θ0, x).
The parameters θ1 and θ0 as well as the probability π = P(Y = 1) are estimated from
data, with corresponding estimates θ̂1, θ̂0 and π̂, the so-called standard plug-in is as
follows

gn(x) =

{
1, if π̂f1(θ̂1, x) > (1− π̂)f0(θ̂0, x);
0, if π̂f1(θ̂1, x) ≤ (1− π̂)f0(θ̂0, x).

If the model is correct, then there exist the true parameters θ∗i so that fi(θ
∗
i , x), i = 0, 1 are

the true class-conditional densities. The estimates θ̂i are (strongly) consistent if θ̂i → θ∗i
for every i = 0, 1 in probability (a.s.). If π̂ is the proportion of ones in the sample, then
by SLLN π̂ → π, a.s. Is standard plug-in consistent rule, given the parameter estimates
are consistent? General answer is No.

Example. Let f(θ, x) be a uniform on [−θ, 0], if θ 6= 1 and uniform over [0, 1], if θ = 1,
π = 0.5. Suppose the true parameters are θ∗0 = 2 and θ∗1 = 1. A reasonable estimate
would be

θ̂i := max
j:Yj=i

|Xi|.

Clearly θ̂i → θ∗i a.s.. On the other hand, θ̂i 6= 1 a.s.. Therefore if x > 0, we have
f(θ̂1, x) = f(θ̂2, x) = 0 and according to the standard plug-in rule, gn(x) = 0. Hence
R(gn) ≥ P(Y = 1) = 0.5, but R∗ = 0.

The counter-example above is possible because of the lack of continuity. We shall now
introduce some necessary continuity assumptions. Let

ηθ(x) :=
πf1(θ1, x)

πf1(θ1, x) + (1− π)f0(θ0, x)
.

The function ηθ is continuous in space L1(Rd, F ), if θn → θ implies
∫
|ηθn(x)− ηθ(x)|F (dx) → 0.

Theorem 6.1.1 Let θ 7→ ηθ be continuous in L1(Rd, F ). Assume that the estimates θ̂i

are (strongly) consistent. Then standard plug-in rule {gn} is (strongly) consistent.

Exercise: Prove the theorem.

Exercise: Show that in the counter-example above, the function ηθ is not continuous
in L1(Rd, F ).

A necessary condition for continuity of ηθ in L1(Rd, F ) is the following: for any x, and
i = 0, 1, the mapping θi 7→ fi(θi, x) is continuous. Indeed, then, for any x also θ 7→ ηθ(x)
is continuous and dominated convergence theorem implies the continuity in L1(Rd, F ).
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6.2 Partitioning rules

Let S := {S1, S2, . . .} be a partition of Rd (disjoint parts that cover all space). For
every x ∈ Rd, let S(x) be the part, also called as a cell containing vector x. Let gn be
a classifier that on each cell classifies according to the majority vote amongst the labels
from the same cell. Formally

gn(x) =

{
0, if

∑n
i=1 I{yi=1}I{xi∈S(x)} ≤

∑n
i=1 I{yi=0}I{xi∈S(x)};

1, else. (6.2.1)

In other words, gn minimizes empirical risk over all possible classifiers that are constants
on the cells of the partition {S1, S2, . . .}.
Definition 6.2.1 Partitioning rule consists of classifiers {gn}, where for every n the
classifier gn is defined as in (6.2.1) and the corresponding partition Sn can depend on n
and on the sample x1, . . . , xn.

In principle, any classifiers (finite-valued function) is defined via a partition, but by par-
titioning rules:

1. the partition is independent of the labels y1, . . . , yn

2. the value of gn in each cell is defined via majority votes.
Despite to these restrictions, the class of partitioning rules is large containing histograms,
nearest neighbor rules, several trees etc.

The consistency of partitioning rules. We shall present a general theorem that gives
sufficient conditions for consistency of partitioning rule. Let {gn} be a partitioning rule
as defined above. In order gn approximate Bayes classifier g∗ more and more precisely
as n grows, it is obvious that the cells Sn

k have to decrease as n grows. On the other
hand, for every cell the class label is determined via majority vote. Since the preciseness
of majority vote rule has to increase, it follows that the number of training pairs (xi, yi)
in each cell has to increase. The following theorem states that these two conditions are
sufficient for consistency.
For any set S ⊂ Rd, let diamS be its diameter: diamS = supa,b∈S ‖a− b‖.
Given a partition and a random sample X1, . . . , Xn, let N(x) be the number of Xi’s in
S(x), i.e.

N(x) =
n∑

i=1

I{Xi∈S(x)}.

Theorem 6.2.2 Let {gn} be a partitioning rule as defined above. Let X be a random
vector with distribution F (x) and independent of the sample. Then ER(gn) → R∗, if the
following two conditions simultaneously hold:

1. diamS(X) → 0 in probability

2. N(X) →∞ in probability.

For the proof, see [1], Thm 6.1.
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General risks and regression with partitioning rule. The partitioning rules are
not limited with two classes or symmetric loss. Indeed, the majority vote rule in a cell is
nothing but the best constant in the ERM-sense in that cell. Hence, for any loss function
and any number of classes, we can define the partitioning rule by taking gn(x) as the
constant that minimizes the empirical risk over the cell S(x). Formally (recall Y is the
set of classes), thus

gn(x) = arg min
j∈Y

n∑
i=1

L(yi, j)I{xi∈S(x)}.

Now it is clear that the partitioning rules can be used by regression: the obtained regres-
sion function has a constant value on the cells, the value is obtained by ERM-principle
over the cell. Formally thus

gn(x) = arg min
r∈R

n∑
i=1

L(yi, r)I{xi∈S(x)}.

If L(y, r) = (r − y)2, then gn(x) is the sample average over the cell:

gn(x) =
1

n(x)

n∑
i=1

yiI{xi∈S(x)}, where n(x) :=
∑

i

I{xi∈S(x)}.

6.2.1 Histogram rule

Histogram rules are partition rules where the partition is obtained by partitioning consists
of cubes of equal size with edge length hn. Hence a cell of the partition is

d∏
i=1

[kihn, ki+1hn),

where ki ∈ Z and the partition is independent of the training data.
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Consistency. A cube with edge length hn has diameter
√

dhd
n. Hence, the first assump-

tion of Theorem 6.2.2 holds if and only if hn → 0. In order the second assumption to hold,
the convergence hn → 0 cannot be too fast. It turns out that it suffices if hn converges
to infinity so slow that nhd

n →∞. Then both assumptions of Theorem 6.2.2 are fulfilled
and the following theorem holds. For proof, see [1], Thm 6.2.

Theorem 6.2.3 Let hn → 0 and nhd
n → ∞. Then histogram rule is universally consis-

tent.

It turns out that the assumptions of the previous theorem are sufficient also for strong
consistency.

Theorem 6.2.4 Let hn → 0 and nhd
n → ∞. Then for every distribution F (x, y) and

ε > 0 there exists n0 such that the risk of histogram rule R(gn) satisfies the inequality

P
(
R(gn)−R∗ > ε

) ≤ 2e
−nε2

32 .

Hence histogram rule is universally strongly consistent.

6.2.2 Nearest neighbor rules

Let x ∈ Rd be a feature vector to classify, and let

x(1), . . . , x(k) (6.2.2)

be the k nearest elements from the training sample to the point x (in Euclidian distance).
In case of a distance tie, the candidate with the smaller index is said to be closer to x. The
k-nearest neighbor rule for classifying x uses the majority votes amongst the labels
of (6.2.2). Formally, the rule is

gn(x) =

{
0, if

∑k
i=1 I{y(i)=1} ≤

∑k
i=1 I{y(i)=0};

1, else.
,

where y(i) is the label of x(i). It is convenient to let k to be odd to avoid ties. Sometimes
the 1-nearest neighbor rule will be referred to as the nearest neighbor rule. Clearly nearest
neighbor rules are partitioning rules – a cell consists of these x that share the same set
of k nearest neighbors. For 1-nearest neighbor method, the partition consists of n cells
{S1, . . . , Sn}, the cell Sj consists of the feature vectors x having xj as the closest sample
point. Such a partition is often called as Voronoi partition (tesselation) . Note that
the empirical risk (training error) of 1-nearest neighbor rule is always zero. In general,
training error tends to increase as k grows.
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Limit behavior with fixed k

Let us briefly state some results about the behavior of the k-nearest neighbor rule, when k
is fixed, but n →∞. At first, we see that for any distribution F (x) of X, the k-th nearest
neighbor converges to x, a.s. Recall that a support of a distribution of F is the smallest
closed set with measure 1. It means that if x belongs to the support of the distribution
of X, then for any ball B(x, r) with radius r > 0, it holds P(X ∈ B(x, r)) > 0.

Proposition 6.2.1 Let X1, . . . , Xn be iid random vectors with distribution F . Let x
belong to the support of F and let X(k)(x) be the k-th neighbor of x. Then, as n grows

‖X(k)(x)− x‖ → 0 a.s. (6.2.3)

Exercise: Prove the proposition by proceeding as follows. Let B be a ball with center
x and radius δ > 0. Since x belongs to support of x, it holds that P(X ∈ B) =: µ > 0.
Show that

{‖X(k) − x‖ > δ} =
{ 1

n

n∑
i=1

IB(Xi) <
k

n

}
.

Now, using the fact that for 0 < ε < µ, there exists no so that for any n > no

{ 1

n

n∑
i=1

IB(Xi)− µ <
k

n
− µ

}
⊂

{ 1

n

n∑
i=1

IB(Xi)− µ < −ε
}

prove the convergence in probability

P(‖X(k)(x)− x‖ > ε) → 0.

Deduce (6.2.3) using the criterion

Xn → X a.s. ⇔ lim
n

P(sup
m≥n

|Xm −X| > ε) = 0, ∀ε > 0. (6.2.4)
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The following exercise generalizes Proposition 6.2.1 by letting k depend on n.

Exercise: Let x belong to the support of F and let k(n)
n
→ 0. Prove that as n grows

P(sup
m≥n

‖X(k(m))(x)− x‖ > ε) → 0.

Deduce that
X(k(n))(x) → x a.s. (6.2.5)

Hint: Show

{
sup
m≥n

‖X(k(m))(x)− x‖ > ε
}

=
⋃

m≥n

{ 1

m

n∑
i=1

IB(Xi)− µ <
k(m)

m
− µ

}
.

Use SLLN and(6.2.4).

Let X be a random vector with distribution F and independent of the sample. From
(6.2.5), it follows that

X(k(n))(X) → X a.s.

Odd k. From (6.2.3) it follows that when x 7→ η(x) is continuous, then for n big enough
η(x(k)) ≈ η(x) so that Y(k) (the class of k-th neighbor) has approximatively the Bernoulli
distribution with parameter η(x). Therefore, the sum of the labels of k nearest neighbors,∑k

l=1 Y(l), has approximatively B(η(x), k) distribution. Hence, the probability that the
majority vote equals to 0, is for odd k approximatively P(B < k

2
), when B ∼ B(η(x), k).

Thus, for odd k and big n, the conditional risk R(g(x)|x) of k-nearest neighbor classifier
is approximatively

P
(
B >

k

2
, Y = 0

)
+ P

(
B <

k

2
, Y = 1

)
, (6.2.6)

where Y is the label of x, hence Bernoulli random variable with parameter η(x) and
independent of B. Since

P
(
B >

k

2

)
=

k∑

j= k
2
+1

(
k

j

)
η(x)j(1− η(x))k−j, P

(
B <

k

2

)
=

k
2
−1∑

j=0

(
k

j

)
η(x)j(1− η(x))k−j,

the probability (6.2.6) is
k∑

j=0

(
k

j

)
η(x)j(1− η(x))k−j

(
η(x)I{j< k

2
} + (1− η(x))I{j> k

2
}
)

Averaging over the features, we obtain that when η is continuous, then for odd k and big
n, the conditional risk R(g) of k-nearest neighbor classifier is approximatively

k∑
j=0

(
k

j

)
E

[
η(X)j(1− η(X))k−j

(
η(X)I{j< k

2
} + (1− η(X))I{j> k

2
}
)]

=: Rk
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It turns out that the intuition above is correct even when the function η is not continuous.
Namely, the following theorem ([1], Thm 5.2) holds.

Theorem 6.2.5 Let k be odd and fixed. Then, for the k-nearest neighbor rule {gn},
ER(gn) → Rk. (6.2.7)

It can be shown

R∗ ≤ · · · ≤ R2k+1 ≤ R2k−1 ≤ · · · ≤ R5 ≤ R3 ≤ R1

and the strict inequalities hold whenever

P(η(X) ∈ {0, 1, 0.5}) > 0. (6.2.8)

Hence, asymptotically the k-nearest neighbor rule works best for bigger k. However, as
the following example shows, it can be so that the nearest neighbor rule works better than
k-nearest neighbor rule for any n.

Example. Let S0 and S1 be two spheres of radius 1 centered at a and b with ‖a− b‖ > 4.
Let P(Y = 1) = P(Y = 0) = 1

2
and given Y = i the feature X is uniform over Si. Let gn

be 1-nearest neighbor rule. Then

ER(gn) = P(Y = 0, Y1 = · · · = Yn = 1) + P(Y = 1, Y1 = · · · = Yn = 0) = 2−n.

When gn is k nearest neighbor rule for k ≥ 3 (odd), then

ER(gn) = 2−n

b k
2
c∑

j=1

(
n

j

)
> 2−n.

Exercise: Prove the equality. Does (6.2.8) hold?

Cover-Hart inequalities. For k = 1, the limit risk R1 is as follows

R1 = 2E
[
η(X)(1− η(X))

]
.

Denote A(X) := η(X) ∧ (1 − η(X)) and recall that R∗ = EA(X). Jensen’s inequality
shows

E[η(X)(1− η(X))] = E[A(X)(1− A(X))] ≤ EA(X)− (EA(X))2 = R∗(1−R∗) ≤ R∗.

The inequalities
R1 ≤ 2R∗(1−R∗) ≤ 2R∗

are known as Cover-Hart inequalities . Hence, small Bayes risk R∗ implies small R1.
In particular, when R∗ = 0, then R1 = R∗ = 0 and from Theorem 6.2.5, it follows then
that nearest neighbor rule (as well as k-nearest neighbor rule) is consistent. On the other
hand, when η(x) 6= 1

2
, then 2η(x)(1− η(x)) > η(x)∧ (1− η(x)). Since 0 < R∗ < 1

2
implies

that (6.2.8) holds, it follows that

P
(
2η(X)(1− η(X)) > η(X) ∧ (1− η(X))

)
> 0

and R1 > R∗. Then the nearest neighbor rule is not consistent.
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Weighted nearest neighbor rule. In k-nearest neighbor rule, each of the nearest
neighbors plays an equally important role. However, just like in the kernel methods
(recall Gaussian kernel) intuition tells that nearest neighbors should provide more infor-
mation. This idea brings to weighted nearest neighbor rule , where for every n, the
i-th nearest neighbor receives weight wni, typically decreasing in i. The rule is

gn(x) =

{
0, if

∑n
i=1 wniI{y(i)=1} ≤

∑n
i=1 wniI{y(i)=0};

1, else.

The k-nearest neighbor rule corresponds to the case when wni = 1
k
for i = 1, . . . , k and

win = 0, elsewhere. Suppose now that the weights wi = wni are independent of n and
wi = 0 if i > k. Then there exists a constant R(w1, . . . , wk) so that

ER(gn) → R(w1, . . . , wk).

Moreover, when k is odd then R(w1, . . . , wk) ≥ Rk and in the most cases of interest
the inequality is strict. Hence, the standard k-neighbor rules are to be preferred in an
asymptotic sense.

Even k. Odd k avoids the voting ties. For even k (in the case of ties), a common tie
breaking rule is to use the label of the nearest neighbor. Formally the rule is

gn(x) =





1 if
∑k

i=1 y(i) > k
2
,

0 if
∑k

i=1 y(i) < k
2
,

y(1) if
∑k

i=1 y(i) = k
2
.

This is equivalent to a weighted k-nearest neighbor rule with weight vector (3, 2, . . . , 2).
Hence, also for even k, the limit risk Rk exists. However, the limit risk for even k is not
better than the one of Rk−1, since it can be shown that for any distribution and even
k, the following equality holds: Rk = Rk−1 ([1] Thm. 5.5). This equality justifies the
practice of using odd k.

Consistency of nearest neighbor rules

Although k-nearest neighbor rule works asymptotically better for big k, it is not consistent
even for a very big but fixed k. It turns out that for consistency the number of nearest
neighbors k has to grow with n. But, as usually, the growth cannot be too fast.

Theorem 6.2.6 (Stone, 1977) If k → ∞ and k
n
→ 0, then the nearest neighbor rule

{gn} is universally consistent, i.e. for every distribution F (x, y), ER(gn) → R∗.

For proof, see [1], thm 6.4. Theorem 6.2.6 was the first universal consistency result.

It turns out that when the problem of distance ties are suitably taken care of, then
the assumptions of Theorem 6.2.6 are sufficient for strong consistency of nearest neighbor
rule. The distance ties do not occur (with probability one), if the distribution of X is
absolutely continuous. Then the following large deviation inequality holds.
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Theorem 6.2.7 Assume that the distribution of X is absolutely continuous. If k → ∞
and k

n
→ 0, then there exists no so that for every n > no the nearest neighbor rule {gn}

satisfies
P(R(gn)−R∗ > ε) ≤ 2e

−nε2

c , (6.2.9)

where c is a constant depending on d. Thus, the nearest neighbor rule is strongly consis-
tent, i.e. R(gn) → R∗ a.s..

In the case of distance ties, the strong consistency can be achieved by suitable tie-breaking
method. It can be shown that the tie-breaking by indices (the sample element with smaller
index is declared to be closer) might destroy the inequality (6.2.9) so that the universal
consistency is very unlikely. A way to circumvent the aforementioned difficulty is ar-
tificial increase the dimension of feature vector by one. The new feature vectors are
(x1, u1), . . . , (xn, un), where u1, . . . , un are the realizations if i.i.d. random variables with
absolutely continuous distribution independent of everything. Since the additional com-
ponent is independent of the pair (X, Y ), the Bayes risk remains unchanged, and since
now ties do not occur any more (a.s.), it can be shown that Theorem 6.2.7 holds and the
rule is universally consistent.

References: About nearest neighbors, read [1], Ch 5,6,11; [7], Ch 3, 13.

6.3 CART-trees

6.3.1 Trees

The tree structure is very popular decision procedure. To every terminal node (leave) of a
decision tree corresponds a cell and a label. The cells form a partition of Rd. Typically the
label of a cell is determined via the training sample by ERM-principle like majority vote
amongst the elements in the cell. If the tree is constructed using the features x1, . . . , xn

but not the labels, then such a tree is a partitioning rule.

We shall consider only binary trees, where each node has exactly two or zero children.
Hence, every node represents a region S and in the case the node is not the terminal
one, the children of the node represent regions S ′ and S

′′ so that S = S ′ ∪ S
′′ and

S ′ ∩ S
′′

= ∅. The regions corresponding to the terminal nodes form the partition. By
trees, it is important that the splitting rule for deciding whether a feature vector from
S belongs to S ′ or S

′′ were possibly simple, i.e. moving along a tree would involve rela-
tively "easy" questions. Most common splitting rule uses single coordinates of the feature
vector x = (x1, . . . , xd) and moving along the decision tree is based on the questions
(conditions) like: Is xi ≤ t? A decision tree based on such splitting rules are called
ordinary binary (classification) tree . The partition corresponding to such tree con-
sists of cells having the boundaries parallel to coordinate axes.
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6.3.2 CART-trees

Perhaps the most popular class of decision trees are so-called CART (classification and
regression trees). They can be used by regression as well as classification, to capture the
idea, it is better to start with regression. CART trees are typically ordinary binary trees,
so that the splitting rule is based on the coordinates.

Regression. As usually by regression, we consider the quadratic loss. The construction
of the tree is based on greedy algorithm: at first step the splitting variable j and splitting
point t is chosen so that the after the splitting the decrease of sum of squares were
maximal. Formally, let for every j = 1, . . . , d and t ∈ R the sets

S1(j, t) := {x ∈ Rd : xj ≤ t}, S2(j, t) := {x ∈ Rd : xj > t}

be the candidates to first split. We look for j an t that are the solutions of the following
problem:

min
t,j

[
min

c1

∑

xi∈S1(t,j)

(yi − c1)
2 + min

c2

∑

xi∈S2(t,j)

(yi − c2)
2
]
. (6.3.1)

Clearly (6.3.1) is equivalent to

min
t,j

[
n1 · 1

n1

∑

xi∈S1(t,j)

(yi − ĉ1)
2 + n2 · 1

n2

∑

xi∈S2(t,j)

(yi − ĉ2)
2
]
, (6.3.2)

where nl, l = 1, 2 is the number of sample elements in Sl and ĉl is the conditional mean
over Sl, i.e.

ĉl :=
1

nl

∑
xi∈Sl

yi.

"For each splitting variable, the determination of the split point can be done very quickly
..." ([7], p. 307.)
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Having found the best split, we partition the data into the two resulting regions and
repeat the splitting process on each of the two regions. Then this process is repeated
on all of the resulting regions. How large should the tree grow? Clearly a very large
tree might overfit the data, while a small tree might not capture the important structure.
One approach would be to split tree nodes only if the decrease in sum-of-squares due
to the split exceeds some threshold. This strategy is too short-sighted, however, since a
seemingly worthless split might lead to a very good split below it. The preferred strategy
is to grow a large tree T0, stopping the splitting process only when some minimum node
size (say 5) is reached. Then this large tree is pruned using cost-complexity pruning ,
which we now describe.

We define a subtree T ⊆ T0 to be any tree that can be obtained by "pruning" T0, that is,
collapsing any number of its internal (non-terminal) nodes. Let, for any subtree, |T | be
the number of its leaves. Given a regularization constant λ, for any subtree T , we define
the (the cost-complexity) function

Rλ(T ) =

|T |∑
i=1

∑
xj∈Si

(yj − ĉi)
2 + λ|T |, (6.3.3)

where S1, . . . , S|T | is the partition corresponding to the subtree, and ĉi is the conditional
average on Si. The idea is to find, for each λ, the subtree Tλ that minimizes Rλ(T ). Large
values of λ result in smaller trees. With λ = 0 the solution is the full tree T0.

Weakest link pruning. To find Tλ, the so-called weakest link pruning is used. In
this method, the internal nodes that produce the smallest per-node increase in

|T |∑
i=1

∑
xj∈Si

(yj − ĉi)
2

are successively collapsed. The procedure is continued until the single root-tree is left.

Thus, at the first step the subtree T is searched so that the following ratio were min-
imal ∑|T |

i=1

∑
xj∈Si

(yj − ĉi)
2 −∑|T0|

i=1

∑
xj∈S0

i
(yj − ĉi)

2

|T0| − |T | , (6.3.4)

where S1, . . . , S|T | and S0
1 , . . . , S

0
|T0| are the partitions of trees T and T0, respectively.

Recall that T is obtained from T0 by collapsing the tree starting from an internal node,
say t. Let St be the union of all cells of T0 corresponding to the offsprings of t, i.e.

St = ∪dt
k=1S

0
ik
,
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where dt be the number of offsprings of the node t. The partitions S1, . . . , S|T | and
S0

1 , . . . , S
0
|T0| coincide, except the cells S0

ik
are replaced by their union St. Let ĉt be the

conditional mean over St. Hence (6.3.4) is actually a function of node:

g1(t) :=

∑
xj∈St(yj − ĉt)

2 −∑dt

k=1

∑
xj∈S0

ik

(yj − ĉik)
2

dt − 1

Therefore, in the first step of the weakest link pruning, the terminal node t1 with smallest
g1(t) is searched. Then T0 is pruned so that t1 is a leave and St1 is the corresponding
cell. Let T 1 be the pruned tree. Now, for T 1, the criterion (6.3.4) is minimized. This
means (re)calculating the coefficients g2(t) for each terminal node of T 1, and finding the
minimizer t2. Proceeding that, we end up with a nested sequence of subtrees

{root} = Tm ⊂ Tm−1 ⊂ · · ·T 1 ⊂ T0.

The following theorem by L. Breiman shows that the sequence above contains Tλ for any
λ. Let λi = gi(ti), where i = 1, . . . , m, λ0 := 0 and λm+1 := ∞.

Theorem 6.3.1 It holds λ0 < λ1 < λ2 < · · · < λm. When λ ∈ [λk, λk+1), then Tλ =
Tλk

= T k, ∀k = 0, 1, . . . , m.

Often the training sample is divided into two parts: a test set and validation set. The
test set is used building T0 and validation set is used to prune.

Classification. Classification is based on the same principle as regression: a big tree
T0 is build and then pruned. Of course, by classification, instead of quadratic loss, an-
other function is used in (6.3.1). A natural choice were empirical risk, but in CART-
methodology also some alternatives are used.
Given a tree T and corresponding partition S1, . . . , S|T |, let

p̂(Si) :=: p̂i :=
1

ni

∑
xj∈Si

yj.

Building and pruning the tree is based on impurity measure φ(p̂i), where φ : [0, 1] → R+

is so-called impurity function that is symmetric around 0.5, has its maximum at 0.5
and equals to zero at 0 and 1. The most commonly used impurity functions are

• φ(p) = min(p, 1− p). Then φ(p̂i) is empirical risk on Si;

• φ(p) = 2p(1− p): Gini index;

• φ(p) = −p log p− (1− p) log(1− p): binary entropy function.

With an impurity function (6.3.2) is

min
t,j

[
n1φ

(
p̂(S1(t, j))

)
+ n2φ

(
p̂(S2(t, j))

)]
. (6.3.5)
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Example: Assume that n = 800 and we have 400 observations in both class (denote this
by (400, 400)). Consider two splits.

• The first split creates nodes (300, 100) and (100, 300). Then p̂1 = 0.75, n1 = 400
and p̂2 = 0.25, n2 = 400. Let us calculate

N1φ
(
p̂(S1)

)
+ N2φ

(
p̂(S2)

)
(6.3.6)

for φ being empirical risk and Gini index. For empirical risk (6.3.6) equals to 200,
for Gini index, it equals to

n12
1

4

3

4
+ n22

1

4

3

4
= 400

6

8
.

• The second split creates nodes (200, 400) and (200, 0). Then p̂1 = 2
6
, n1 = 600 and

p̂2 = 1, n2 = 200. For empirical risk (6.3.6) equals to 200, again, but for Gini index,
it is smaller:

n1
1

3

2

3
= 600

2

9
=

400

3
.

Hence, using Gini index, the second split is preferred, since it produces a pure node.
Based on such arguments, the authors of [7] suggest to use Gini index or entropy function
as the impurity function.

Also the pruning is similar to regression. The function (6.3.3) is now

Rλ(T ) =

|T |∑
i=1

niφ
(
p̂(Si)

)
+ λ|T |.

The ratio (6.3.4) is ∑|T |
i=1 niφ(p̂(Si))−

∑|T0|
i=1 n0

i φ(p̂i(S
0
i ))

|T0| − |T |
Finally, the function g1(t) is

g1(t) :=
ntφ(p̂(St))−∑dt

k=1 n0
ik
φ(p̂(S0

ik
))

dt − 1
, (6.3.7)

where nt and n0
ik

are the number of elements in St and S0
ik
, so that nt =

∑
k n0

ik
.

Exercise: Let φ be one of the three impurity functions above; let g1 be defined as in
(6.3.7). Prove that for every terminal node g1(t) ≥ 0.

After the node t1 minimizing g1(t) is found, the subtree started from t1 is pruned and the
process is repeated with pruned tree T 1 instead of the T0 just like by regression.
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The authors of [7] suggest to use empirical risk by pruning. Hence, they suggest to
use different impurity functions by growing the tree and pruning.

The obtained rule is not a partitioning rule. Also, it is possible to show that when
the splitting rule is based on single coordinates, then the CART-trees are not consistent.
For a counterexample, see ([1], 20.8).

More than two classes. The CART-methodology naturally generalizes for more than
two classes. Indeed, for each cell and class m = 0, . . . , k − 1 define the proportion of
m-labels in cell i:

p̂i,m :=
1

ni

∑
xj∈Si

I{yj=m}.

The impurity functions generalize for k classes as follows.

• empirical risk: φ(p0, . . . , pk−1) = 1−maxi=0,...,k−1 pi;

• Gini index: φ(p0, . . . , pk−1) =
∑k−1

i=0 pi(1− pi);

• entropy: φ(p0, . . . , pk−1) = −∑k−1
i=0 pi ln pi.

References: About CART-trees, read [7], Ch 9; [8], Ch 7. About other tree-based
methods, read [1], Ch 20.
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Chapter 7

Unsupervised learning: Hidden Markov
models

So far, we have been considering the supervised learning – also called learning with teacher
– where the training data are given with the labels, i.e. to every feature vector xi, the
corresponding label (or output on the regression) yi is known. Now, we consider the case
of unsupervised learning , where the training sample x1, . . . , xn consists of feature
vectors without the labels. To do some meaningful predictions without any further infor-
mation about the data is difficult, although several general methods like cluster analysis
exists. Often the lack of labels is compensated by assuming or knowing the probabilistic
(generic) model of the data. Often the model is known up to the parametrization, and the
parameters are estimated from the data. Sometimes a part (typically a small fraction) of
the training data is known with labels and the rest of the data consist of feature vectors,
solely. This case is referred to as semi-supervised learning . In semi-supervised learn-
ing, typically, the supervised part of the data (with labels) is used for fitting the model,
the rest of the data (without labels) are then analyzed with using the fitted model.

7.1 Definition of Hidden Markov model
We shall consider a simple yet general model for classification in the case of unsupervised
learning. Let us start with the basic definitions.

Underlying Markov chain – the regime. As previously, let Y = {0, . . . , k − 1}
be the set of classes; in this chapter the classes will be referred to as the states ,
and the set Y will be now called as the state space. Let now Y = {Yt}t∈N be a
homogeneous Markov chain that takes values in Y . As usually, we shall denote
by πj = P (Y1 = j), j ∈ Y the probability that the initial state is j; the vector π is thus
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the distribution of Y1. We shall denote via

P =




p00 p01 · · · p0(k−1)

p10 p11 · · · p1(k−1)

· · · · · · · · · · · ·
p(k−1)0 p(k−1)1 · · · p(k−1)(k−1)




the transition matrix of Y , hence, for any i1, . . . , it−2 ∈ Y

pij = P(Yt = j|Yt−1 = i) = P(Yt = j|Yt−1 = i, Yt−2 = it−2, . . . , Y1 = i1),

where the last equality follows from the Markov property. The chain Y is often called
as regime and it is uniquely determined by the parameters π and P. In practice, the
regime Y is often defined to be as simple as possible, hence also stationary, irreducible
and aperiodic, but we do not need any of these assumptions in this chapter.

Hidden Markov process – the observations. The second component of our model
is the random (feature) process X = {Xt}t∈N with Xt taking values in X ⊆ Rd. We
assume that the pair of random processes (Y, X) is such that:

1) given {Yt}, the random variables {Xt} are conditionally independent,

2) the distribution of Xt depends on {Yt} only through Yt.

When 1) and 2) hold, then the process X is called a hidden Markov process and the
pair (Y, X) is called a hidden Markov model (HMM). The hidden Markov process
X = {X1, X2, . . .} models the observations so that the random features X1, . . . , Xn are
the first n vectors of it. The corresponding outcomes of Y1, . . . , Yn are not observed, the
Markov chain is hidden.

Note that, in general, X1, . . . , Xn are neither independent nor identically distributed any
more, hence our model allows to drop both assumptions made so far.

Emission distributions. The assumption 2) states that for any t, the distribution of
Xt depends on the regime only through the value of Yt. Hence the distribution of Xt is
independent of t and of the outcomes Ys, where s 6= t. Therefore, to every state j ∈ Y
corresponds a probability measure Pj such that for every Borel set A and for every t ≥ 1,
it holds

Pj(A) = P(Xt ∈ A|Yt = j).

The probability measures Pj, j ∈ Y are called emission distributions. Without loss
of generality, we will assume that the emission distributions Pj all have densities fj with
respect to a common reference measure dx. As usually, the Lebesgue’i measure and
counting measure (both denoted by dx) are of particular interest.
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Finite alphabet HMP. When the emission distributions Pj all have finite (countable)
support, then X is referred to as finite (countable)-alphabet HMP . In this case,
the set X can be taken as the union of all supports, hence finite (countable). It will be
referred to as the alphabet. Then, for every state, the density fj(x) is just the probability
to emit the observation or letter x from the state j.

Mixture model: a special case. In a special case, when the columns of the transition
matrix P are all equal to π, i.e. pij = π, for all i, j ∈ Y , then Y1, Y2, . . . are i.i.d. random
variables with distribution π. Then also X1, X2, . . . are i.i.d. random variables with
density function

f(x) =
k−1∑
j=0

πjfi(x).

This model is sometimes called mixture model. Hence HMM also covers the case stud-
ied in Chapter 1.

7.2 Forward-backward recursions

7.2.1 Some notations and preliminaries.

Given a set A, integers m and n, m < n, and a sequence a1, a2, . . . ∈ A∞, we write an
m

for the subsequence (am, . . . , an). When m = 1, it will be often suppressed.

Thus, xn := (x1, . . . , xn) and yn := (y1, . . . , yn) stand for the fixed observed and un-
observed realizations of Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn), respectively. Any
sequence yn ∈ Yn is called a path .

Let 1 ≤ r ≤ m ≤ n. From the definition of HMM, it follows that the conditional density
of observing xm

r given the realization yn is the product of emission densities. Hence, we
define

p(xm
r |yn) :=

m∏
t=r

fyt(xt).

In the following, let for any yv
u, where 1 ≤ u ≤ v

p(yv
u) := P(Yu = yu, Yu+1 = yu+1, . . . , Yv = yv).

Hence, we shall denote the joint probability density of (xm
r , yn) by

p(xm
r , yn) := p(xm

r |yn)p(yn) =
m∏

t=r

fyt(xt)P(Y n = yn) =
m∏

t=r

fyt(xt)πy1

n∏
t=2

pyt−1,yt .
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The unconditional density of a piece of observations xv
u is now

p(xm
r ) :=

∑
yn∈Yn

p(xm
r , yn).

The joint probability density of (xm
r , yv

u), where 1 ≤ u ≤ v ≤ n is thus

p(xm
r , yv

u) :=
∑

sn∈Yn:sv
u=yv

u

p(xm
r , sn).

With joint density p(xm
r , yv

u) and unconditional p(yv
u) and p(xm

r ) we can define the condi-
tional probabilities

P(Yu = yu, . . . , Yv = yv|Xr = xr, . . . , Xm = xn) :=: p(yv
u|xm

r ) :=
p(xm

r , yv
u)

p(xm
r )

and conditional densities

p(xm
r |Yu = yu, . . . , Yv = yv) :=: p(xm

r |yv
u) :=

p(xm
r , yv

u)

p(yv
u)

.

We shall more closely consider the conditional probabilities p(yt|xn). Therefore, they will
have a special notation: for any t ≥ 1 and j ∈ Y , let

pt(j|xn) := P(Yt = j|Xn = xn).

The probabilities pt(·|xn) are called:

• smoothing (posterior) probabilities, when t < n;

• filtering (posterior) probabilities, when t = n;

• prediction (posterior) probabilities, when t > n.

We shall also define
pt(j) := P(Yt = j).

For stationary chain, clearly pt(j) = πj for any t, but in general not.

In a special case of finite-alphabet HMP, the joint and conditional densities are just

p(xm
r , yv

u) = P(Xr = xr, . . . , Xm = xn; Yu = yu, . . . , Yv = yv) = P(Xm
r = xm

r ; Y v
u = yv

u);

p(xm
r |yv

u) = P(Xr = xr, . . . , Xm = xn|Yu = yu, . . . , Yv = yv) = P(Xm
r = xm

r |Y v
u = yv

u).
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7.2.2 Forward and backward recursions

Let us for every j ∈ Y and xn ∈ X n define forward and backward variables

α(j, xt) := pt(j|xt)p(xt), β(xn
t+1|j) :=

{
1, if t = n
p(xn

t+1|Yt = j), if t < n

Clearly with yt = j

α(j, xt) = p(xt, yt) =
∑

yt:yt=j

p(xt, yt), (7.2.1)

β(xn
t+1|j) =

∑
yn

t+1

p(xn
t+1, y

n
t+1|Yt = j) =

∑
yn

t+1

p(xn
t+1, y

n
t+1|yt). (7.2.2)

For any yn ∈ Yn and xn ∈ X n the following factorization holds

p(xn, yn) =p(xn|yn)p(yn) = p(xt|yn)p(xn
t+1|yn)p(yn) = p(xt|yt)p(xn

t+1|yn
t )p(yn)

=p(xt|yt)p(xn
t+1|yn

t )p(yt)p(yn
t+1|yt) = p(xt, yt)p(xn

t+1|yn
t )p(yn

t+1|yt)

=p(xt, yt)p(xn
t+1, y

n
t+1|yt).

The second equality follows from the assumption 1) of HMM (conditional independence
of xn), the third inequlity follows from the assumption 2) and the fourth equality follows
from the Markov property. The last equality follows from

p(xn
t+1|yn

t )p(yn
t+1|yt) =

p(xn
t+1, y

n
t )

p(yn
t )

p(yn
t )

p(yt)
=

p(xn
t+1, y

n
t )

p(yt)
= p(xn

t+1, y
n
t+1|yt).

Summing over all paths yn passing the state j at t, using (7.2.1) and (7.2.2), from the
factorization p(xn, yn) = p(xt, yt)p(xn

t+1, y
n
t+1|yt) we obtain with yt = j

p(xn, yt) =
∑

yn:yt=j

p(xn, yn) =
( ∑

yt:yt=j

p(xt, yt)
)( ∑

yn
t+1

p(xn
t+1, y

n
t+1|yt)

)
= α(j, xt)β(xn

t+1|j).

(7.2.3)
From (7.2.3), it follows that α and β-variables can be used for finding pt(j|xn):

p(xn) =
∑
yt∈Y

p(xn, yt) =
∑
j∈Y

α(j, xt)β(xn
t+1|j), (7.2.4)

pt(j|xn) =
α(j, xt)β(xn

t+1|j)∑
j∈Y α(j, xt)β(xn

t+1|j)
, (7.2.5)

In a special case of finite-alphabet HMP the variables are

α(j, xt) = P(X t = xt; Yt = j), β(xn
t+1|j) = P(Xn

t+1 = xn
t+1|Yt = j).

and the equation (7.2.3) is, thus,

P(Xn = xn; Yt = j) = P(X t = xt; Yt = j)P(Xn
t+1 = xn

t+1|Yt = j).
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Standard recursions. From the factorization

p(xn, yn) = p(xt, yt)p(xn
t+1, y

n
t+1|yt) (7.2.6)

with n = t + 1, we get

p(xt+1, yt+1) = p(xt, yt)p(xt+1, yt+1|yt). (7.2.7)

Summing over yt−1, we get

p(xt+1, yt+1
t ) = p(xt, yt)p(xt+1, yt+1|yt)

and summing over yt, we obtain

p(xt+1, yt+1) =
∑
yt

p(xt, yt)p(xt+1, yt+1|yt).

Finally, since

p(xt+1, yt+1|yt) = p(yt+1|yt)fyt+1(xt+1) = pytyt+1fyt+1(xt+1)

we have obtained a forward recursion for calculation α-variables:

α(j, xt+1) =
k−1∑
i=0

α(i, xt)pijfj(xt+1).

Similarly, one can show the backward recursion for calculation β-variables (see [27]):

β(xn
t |j) =

k−1∑
i=0

β(xn
t+1|i)pjifi(xt).

In a special case of finite-alphabet HMP the forward and backward recursions are

P(Yt+1 = j; X t+1 = xt+1) =
∑

i

P(Yt = i; X t = xt)P(Yt+1 = j|Yt = i)P(Xt+1 = xt+1|Yt+1 = j)

P(X t
t = xn

t |Yt−1 = j) =
∑

i

P(Xn
t+1 = xn

t+1|Yt = i)P(Yt = i|Yt−1 = j)P(Xt = xt|Yt = i).

Derin’s recursion. The above-described (standard) backward and forward recursions
are not numerically stable, hence they are not very practical. Therefore, their normalized
versions as well as several alternative recursions for calculating pt(j|xn) in simular fashion
are used. For example, the so-called Derin’s recursion for finding pt(j|xn) backward
is as follows:

pt(j|xn) = pt(j|xt)
k−1∑
i=0

pjipt+1(i|xn)

pt+1(i|xt)
.
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For proof, see [27]. Here the smoothing probabilities pt(·|xt) and prediction probabilities
pt+1(·|xt) can be found by forward recursion as follows:

p1(j|x1) =
πjfj(x1)∑
i πifi(x1)

, pt+1(j|xt) =
∑

i

pijpt(i|xt), pt+1(j|xt+1) =
pt+1(j|xt)fj(xt+1)∑
i pt+1(i|xt)fi(xt+1)

(7.2.8)
Exercise: Prove (7.2.8).

7.2.3 Conditional chain

The following proposition shows an important property: Y is an conditioonally inhomo-
geneous Markov chain given X.

Proposition 7.2.1 Given the observations xn, the regime has Markov property:

P(Yt+1 = j|Yt = i, Y t−1 = yt−1; Xn = xn) = P(Yt+1 = j|Yt = i; Xn = xn). (7.2.9)

Moreover, the conditional transition probablities

P(Yt+1 = j|Yt = i; Xn = xn)

depend on the observations xn
t+1, only.

Proof. It suffices to show that for any yt+1 ∈ Y t+1, the following equality holds

p(yt+1|yt, xn) = p(yt+1|yt, x
n
t+1). (7.2.10)

Indeed, (7.2.10) shows that the conditional transition probability p(yt+1|yt, xn) does not
depend on yt−1, hence Markov property (7.2.9), holds; the equality (7.2.10) also shows
that given yt the conditional distribution of yn

t+1 is independent of xt. To show (7.2.10),
recall the factorization (7.2.6):

p(xn, yn) = p(xt, yt)p(xn
t+1, y

n
t+1|yt).

Summing over yn
t+2 and yn

t+1, we obtain

p(xn, yt+1) = p(xt, yt)p(xn
t+1, yt+1|yt), p(xn, yt) = p(xt, yt)p(xn

t+1|yt).

Thus,

p(yt+1|yt, xn) =
p(xn, yt+1)

p(xn, yt)
=

p(xt, yt)p(xn
t+1, yt+1|yt)

p(xt, yt)p(xn
t+1|yt)

=
p(xn

t+1, yt+1|yt)

p(xn
t+1|yt)

= p(yt+1|yt, x
n
t+1).
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7.3 Segmentation
Let xn = x1, . . . , xn be the given observations. We do not know the corresponding regime
(the Markov chain is hidden), instead we assume that our model (HMM) is exactly known.
The problem of segmentation (problem of decoding) is to estimate or prognose
the hidden state sequence y1, . . . , yn. This can be regarded as a classification problem,
where input xn ∈ X n, the set of outputs (classes) is Yn and the classifier is a function

g = (g1, . . . , gn) : X n → Yn. (7.3.1)

However, since the input and the output (the set of classes) both depend on n, the
segmentation is the problem in its own rights.

7.3.1 Decision theory for HMM’s

What is the best classifier (7.3.1)? To answer that, let us apply some ideas of Bayesian
decision theory also for HMM’s case. Recall the Bayesian decision theory – the Bayes
classifier g∗ is the one that for every feature vector x minimizes the conditional risk at x,
i.e.

g∗(x) = arg min
j∈Y

R(j|x).

Also recall that the conditional risk was obtained via loss function L : Y × Y → R+,
where L(y, j) is the loss of misclassifying the true class y as j. With loss function, for any
j ∈ Y ,

R(j|x) =
∑
y∈Y

L(y, j)p(y|x).

Suppose now that we have defined the conditional risk function also for the segmentation
problem. Thus, for every xn, we have the conditional risk

R(·|xn) : Yn → [0,∞]

so that R(sn|xn) measures the goodness of path sn ∈ Yn given xn. Just like in Bayesian
decision theory, the risk of classifier g = (g1, . . . , gn) is then the expectation of conditional
risk

R(g) := ER(g(Xn)|Xn)

and the classifier with minimal risk (over all possible classifiers) is called Bayes classifier
that can be obtained by minimizing the conditional risk:

g∗(xn) := arg min
sn∈Yn

R(sn|xn).
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Loss function. The conditional risk R(·|xn) depends on the task and (just like in
Bayesian desicion theory) it is often meaningful to define it via loss function

L : Yn × Yn → [0,∞],

where L(yn, sn) is loss, when the actual state sequence is yn and the prognose is sn. The
conditional expectation

R(sn|xn) := E[L(Y n, sn)|Xn = xn]

is the conditional risk of sn. Then, for any classifier g, the risk R(g) is just the expected
loss

R(g) = EL(Y n, g(Xn))

and the Bayes classifier is

g∗(xn) = arg min
sn∈Sn

∑
yn∈Sn

L(yn, sn)P(Y n = yn|Xn = xn).

7.3.2 Viterbi aligment

Let us start with symmetric loss-function:

L(yn, sn) =

{
1, when yn 6= sn;
0, when yn = sn. (7.3.2)

Then the conditional risk (in this case denoted by R∞) is

R∞(sn|xn) = 1−P(Y n = sn|Xn = xn)

and the Bayes classifier – for symmetric loss denoted by v – maps every sequence of
observations into sequence sn with maximum likelihood.

v(xn) := arg max
sn∈Sn

P(Y n = sn|Xn = xn).

The maximum-likelihood state sequence v(xn) is known as Viterbi alignment . It in-
herits its name from the Viterbi algorithm – a dynamic programming algorithm for
finding v(xn). Partially due to the simplicity of Viterbi algorithm, Viterbi alignment is
by far most popular classifier in segmentation.
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Viterbi algorithm. Recall the problem: given observations xn, we are trying to find
(all) path(s) vn ∈ Yn that maximizes the joint density p(xn, yn) over all yn ∈ Yn. Since
the size of the search space is kn, the disrect optimization is imposible even for moderate
n. The Viterbi algorithm allows to solve the problem with complexity O(n).

Let us introduce some notation. Since xn is fixed, we skip it from the notation. Let,
for every t = 1, . . . , n and state j ∈ Y , the (Viterbi) scores be

δt(j) = max
yt,yt=j

p(xt, yt).

Hence δt(j) is the maximum joint likelihood over all paths ending at the state j. The
scores can be found recursively (in t). Indeed, let yt+1 be a path that ends with j, i.e
yt+1 = j. Then, using the factorization again,

p(xt+1, yt+1) = p(xt, yt)p(xt+1, yt+1|yt) = p(xt, yt)pytjfj(xt+1).

Let st ∈ Y t be the path that maximizes p(xt, yt)pytj over all paths. If it ends at the state
i, i.e. st = i, then

p(xt, st)pstj = p(xt, st)pij

so that st has to be the path that maximizes p(xt, yt) over all paths yt ending with i. This
is Bellman’s optimality principle . In other words, if st = i, then p(xt, st) = δt(i).
That holds for every state i, thus

δt+1(j) = max
i

(
max

yt+1:yt+1=i
p(xt, yt)pij

)
fj(x

t+1) = max
i

(
δt(i)pij

)
fj(xt+1).

Hence, we have the following (Viterbi) recursion for finding δt(i) for every i and t:

δ1(j) = πjfj(x1), δt+1(j) = max
i

(
δt(i)pij

)
fj(xt+1) (7.3.3)

Viterbi algorithm is a standard dynaming programming algorithm: at each t = 1, . . . , n
the scores δt(j) are calculated using recursion (7.3.3). By that, the algorithm stores

it(j) := arg max
i

δt(i)pij, t = 1, . . . , n− 1.

In case of ties, any choise will do. The solution can now found by backtracking as follows

vn = arg max
j

δn(j), vt = it(vt+1), t = n− 1, . . . , 1.
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Viterbi algorithm

1. Initialize: For every j ∈ Y , define δ1(j) := πjfj(x1);

2. Do for t = 1, . . . , n− 1:

• Update
δt+1(j) = max

i

(
δt(i)pij

)
fj(xt+1); (7.3.4)

• Record
it(j) := arg max

i
δt(i)pij

3. Output: Find Viterbi alignment vn by backtracking:

vn := arg max
j

δn(j), vt = it(vt+1), t = n− 1, . . . , 1.

—————————–

The following picture illustrates Viterbi algorithm in action. The solid lines indicates
the output, the dashed lines indicate it(j).
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7.3.3 PMAP alignment

The symmetric loss (7.3.2) penalizes all differences alike: no matter whether yn and sn

differ from one entry or all entries, the penalty is one. Often it is natural to penalize every
different entry. This can be done by pointwise loss-function

l : Y × Y → [0,∞) where l(s, s) = 0, ∀s ∈ Y . (7.3.5)

Using l, we can define loss-function L as follows

L(yn, sn) :=
n∑

t=1

l(yt, st). (7.3.6)

With (7.3.6), the conditional risk is

R(sn|xn) = E[L(Y n, sn)|Xn = xn] =
n∑

t=1

E[l(Yt, st)|Xn = xn] (7.3.7)

and minimizing R(sn|xn) over sn equals to minimizing E[l(Yt, st)|Xn = xn] over st at
every t. Hence, the Bayes classifier is obtained pointwise: g∗ = (g∗1, . . . , g

∗
n), where

g∗t (x
n) = arg min

s∈Y
E[l(Yt, s)|Xn = xn].

Counting errors. The most popular choice for l is, again, symmetric (pointwise) loss:

l(y, s) =

{
0, if y = s;
1, if y 6= s. .

Then the loss-function L counts the differences between yn and sn when compared pair-
wise: L(yn, sn) is the number of pairwise errors or the difference in Hamming distance .
Therefore, the conditional risk (in this case denoted by R1) R1(s

n|xn) measures expected
number of misclassification errors of sn given the observations are xn. From (7.3.7), it
follows that

R1(s
n|xn) := n−

n∑
t=1

P(Yt = st|Xn = xn),

hence the Bayes classifier in this case – let us denote it by u – is the one that at each time
t chooses the state with conditional probability:

ut(x
n) = arg max

j
P(Yt = j|Xn = xn) = arg max

j
pt(j|xn), t = 1, . . . , n.

We shall call u as PMAP (pointwise maximum aposteriori) alignment . Other
names encountered: marginal posterior mode, maximum posterior marginals, optimal
symbol-by-symbol detection, symbol-by-symbol MAP estimation, MAP-state estimation.
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We know that the conditional probabilities pt(j|xn) can be found with complexity O(n)
by several forward-backward recursions. This makes PMAP-classifier implementable and
that is why PMAP alignment is the second most popular choice in practice.

Remark: Note that for mixture model these two alignments – Viterbi and PMAP align-
ment – coincide.

Logarithmic risks. Let us denote the logarithmic counterparts of R∞ and R1 risks:

R̄∞(sn|xn) := − lnP(Y n = sn|xn)

R̄1(s
n|xn) := −

n∑
t=1

lnP(Yt = st|xn) = −
n∑

t=1

ln pt(st|xn).

Clearly Viterbi alignment v(xn) minimizes R̄∞(·|xn) and PMAP alignment u(xn) mini-
mizes R̄1(·|xn).

7.3.4 Between PMAP and Viterbi

If the aim is to minimize the number of errors, then one should use PMAP-alignment.
Unfortunately, it can be with very low or zero conditional likelihood, i.e. it might be
that p(un|xn) = 0. We call paths that have zero conditional likelihood inadmissible .
This drawback is probably the main reason, why Viterbi alignment, although it might
make in average more errors is preferred over PMAP alignment. In the following, we
consider some options how to adjust PMAP alignment so that it still results an output
with possible small number of expected misclassification errors, but at the same time
remains admissible.

Restricted R1-risk. The simplest solution is restricted R1-risk :

min
yn:p(yn|xn)>0

R1(y
n|xn) ⇔ max

yn:p(yn|xn)>0

n∑
t=1

pt(yt|xn). (7.3.8)

This problem can be solved by dynamic programming algorithm similar to the one of
Viterbi algorithm.

Algorithm for restricted optimization:

1. Initialize:

• Using forward-backward recursions, compute pt(j|xn) for every 1 ≤ t ≤ n and
j ∈ Y ;

• For every j ∈ Y , set
δ1(j) := p1(j|xn);
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2. Do for t = 1, . . . , n− 1:

• For every j ∈ Y , update
δt+1(j) =

(
max

i
δt(i)rij + pt+1(j|xn)

)
rt+1
j , (7.3.9)

where
rij = I{pij>0}, rt

j = I{pt(j|xn)>0}.

• Record
it(j) := arg max

i
δt(i)rij, t = 1, . . . , n− 1.

3. Output: Find the optimal alignment sn by backtracking:

sn := arg max
j

δn(j), st = it(st+1), t = n− 1, . . . , 1.

Note that without the multipliers rij and rt
j, the algorithm would indeed result PMAP-

alignment, because, for every t and j, δt+1(j) = maxi δt(i) + pt+1(j|xn) so that

max
j

δt+1(j) = max
i

δt(i) + max
j

pt+1(j|xn).

If pt+1(j|xn) > 0, then arg maxi δt(i)rij > 0, since otherwise there would no admissible
path passing j at t + 1 with positive likelihood. This contradicts pt+1(j|xn) > 0.

Finally note that the recursion (7.3.9) is equivalent to

δ1(j) := p1(j|xn), (7.3.10)
δt+1(j) := max

i
(δt(i) + log rij) + pt+1(j|xn) + log rt+1

j .

Restricted R̄1-risk. In the presence of restrictions, (7.3.8) is not necessarily the solution
of the following problem:

min
sn:p(sn|xn)>0

R̄1(s
n|xn) ⇔ max

sn:p(sn|xn)>0

n∑
t=1

ln pt(st|xn). (7.3.11)

The solution of (7.3.11) is sometimes called as the posterior Viterbi decoding (PVD)
and it can be found the similar algorithm, where the recursion (7.3.9) is replaced by the
following recursion

δ1(j) := p1(j|xn), (7.3.12)
δt+1(j) := max

i
δt(i)rij × pt+1(j|xn).

Recursion (7.3.12) is clearly equivalent to

δ1(j) := log p1(j|xn), (7.3.13)
δt+1(j) := max

i

(
δt(i) + log rij

)
+ log pt+1(j|xn).
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Towards increasing the probability: R̄1-risk. Although admissible minimizers of
R1 and R̄1 risk are by definition of positive probability, this probability might still be very
small. Indeed, in the above recursions, the weight rij is 1 even when pij is very small.
Hence, in recursion (7.3.13) , we replace rij by the true transition (initial) probability pij

and add log πj to log p1(j|xn). Thus the modified recursion (7.3.13) is now

δ1(j) := log p1(j|xn) + log πj (7.3.14)
δt+1(j) := max

i

(
δt(i) + log pij

)
+ log pt+1(j|xn).

Obviously, similar changes might be done in recursion (7.3.12). It is not difficult to see that
with the recursion (7.3.14) the algorithm for restricted optimization solves the following
problem

max
sn

[ n∑
t=1

log pt(st|xn) + log p(sn)
]

⇔ min
sn

[
R̄1(s

n|xn) + h(sn)
]
, (7.3.15)

where the penalty term

h(sn) = − log p(sn) =: R̄∞(sn) (7.3.16)

is the prior log-likelihood risk which does not depend on the data.

More general problem. The recursion (7.3.14) immediately generalize as follows:

δ1(j) := log p1(j|xn) + C log πj, (7.3.17)
δt+1(j) := max

i

(
δt(i) + C log pij

)
+ log pt+1(j|xn),

solving the following optimization problem

min
sn

[
R̄1(s

n|xn) + Ch(sn)
]
, (7.3.18)

where C > 0 is a regularization or trade-off constant and h(sn) = R̄∞(sn). Then, PVD,
i.e. the problem solved by the original recursions (7.3.12) and (7.3.13), can be recovered
by taking C sufficiently small. Alternatively, the PVD problem can also be formally
written in the form (7.3.18) with C = ∞ and h(sn) given, for example, by I{p(sn)=0}.

Towards increasing the probability: R1-risk. What if the actual probabilities pij

(πj) were also used in the optimal accuracy/PMAP decoding, i.e. optimization (7.3.9)-
(7.3.10)? It appears more sensible to replace the indicators rij with pij (and adding πj)
in (7.3.10). The new recursion is now

δ1(j) := p1(j|xn) + log πj, (7.3.19)
δt+1(j) := max

i
(δt(i) + log pij) + pt+1(j|xn) + log rt+1

j .

This solves the following problem:

max
sn:p(sn|xn)>0

[ ∑
pt(st|xn) + log p(sn)

]
⇔ min

sn:p(sn|xn)>0

[
R1(s

n|xn) + R̄∞(sn)
]
. (7.3.20)
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7.3.5 Combined risks

Motivated by the previous section, we consider the following general problem

min
sn

[
C1R̄1(s

n|xn) + C2R̄∞(sn|xn) + C3R̄1(s
n) + C4R̄∞(sn)

]
, (7.3.21)

where Ci ≥ 0, i = 1, 2, 3, 4,
∑4

i=1 Ci > 0 and (recall)

R̄1(s
n|xn) = −

n∑
t=1

log pt(st|xn), R̄∞(sn|xn) = − log p(sn|xn),

R̄1(s
n) := −

n∑
t=1

log pt(st), R̄∞(sn) = − log p(sn) = −[log πs1 +
n−1∑
t=1

log pstst+1 ].

Some important special cases:

• the combination C1 > 0, C2 = C3 = C4 = 0 yields the PMAP case;

• the combination C2 > 0, C1 = C3 = C4 = 0 corresponds to the Viterbi decoding;

• the combination C3 > 0, C1 = C2 = C4 = 0 maximizes

−R̄1(s
n) =

n∑
t=1

log pt(st) =
n∑

t=1

log P(Yt = st),

sometimes called marginal prior mode decoding;

• the combination C4 > 0, C1 = C2 = C3 = 0 maximizes p(sn) = P(Y n = sn),
sometimes called maximum a priori decoding;

• the combination case C1 > 0, C4 > 0, C2 = C3 = 0 subsumes (7.3.18):

min
sn

[
C1R̄1(s

n|xn)− C4 log p(sn)
]
;

• the combination C1 = C3 = 0 is the problem

min
sn

[
R̄∞(sn|xn) + CR̄∞(sn)

]

and its solution is a generalization of the Viterbi decoding that allows one to suppress
(C > 0) contribution of the data;

• the combination C1 > 0, C2 > 0, C3 = C4 = 0 is the problem

min
sn

[
C1R̄1(s

n|xn) + C2R̄∞(sn|xn)
]
,

and when 0 < C2 ¿ C1, it equals to minimizing R̄1(s
n|xn) under the condition

R̄∞(sn|xn) < ∞ ⇔ p(sn|xn) > 0.

Thus the problem is the same as (7.3.11) and the solution of this problem is PVD-
alignment.
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Remark. It is important to note that with C2 > 0 every solution of (7.3.21) is admissible.
No less important, and perhaps a bit less obvious, is that C1, C4 > 0 also guarantees
admissibility of the solutions.

Dynamic programming algorithm for solving (7.3.21) With suitable recursion,
the algorithm for restricted optimization can be used to solve 7.3.21). To state the recur-
sion, let

gt(j) := C1 log pt(j|xn) + C2 log fj(xt) + C3 log pt(j).

Note that the function gt depends on the entire data xn and they involve pt(j|xn) as well
as pt(j). The general recursion is the following

δ1(j) := C1 log p1(j|xn) + (C2 + C3 + C4) log πj + C2 log fj(x1),

δt+1(j) := max
i

(
δt(i) + (C2 + C4) log pij

)
+ gt+1(j). (7.3.22)

Some important special cases (check):

• the combination C1 > 0, C2 = C3 = C4 = 0 yields the PMAP alignment ;

• the combination C2 > 0, C1 = C3 = C4 = 0 gives

δ1(j) := C2 log
(
πjfj(x1)

)
,

δt+1(j) := max
i

(
δt(i) + C2 log pij

)
+ C2 log fj(xt+1) = max

i

(
δt(i) + C2 log

(
pijfj(xt+1)

))

and that equals to Viterbi recursion (7.3.4);

• the combination C3 > 0, C1 = C2 = C4 = 0 gives the recursion

δ1(j) := C3 log πj,

δt+1(j) := max
i

δt(i) + C3 log pt+1(j)

that, indeed, maximizes
∑n

t=1 log pt(st);

• the combination C4 > 0, C1 = C2 = C3 = 0 gives the recursion

δ1(j) := C4 log πj,

δt+1(j) := max
i

(
δt(i) + C4 log pij

)

that, indeed, maximizes log p(sn);

• the combination case C1 > 0, C4 > 0, C2 = C3 = 0 gives the recursion

δ1(j) := C1 log p1(j|xn) + C4 log πj,

δt+1(j) := max
i

(
δt(i) + C4 log pij

)
+ C1 log pt+1(j|xn) (7.3.23)

166



that for C1 = 1 and C4 = C is exactly the same as (7.3.17). Clearly (7.3.23) solves
the problem

max
sn

[
C1

∑
t

log pt(st|xn) + C4 log p(sn)
]

= min
sn

[
C1R̄1(s

n|xn) + C4R̄∞(sn)
]
;

• the combination C2 > 0, C4 > 0, C1 = C3 = 0 gives the recursion

δ1(j) := C2 log
(
πjfj(x1)

)
+ C4 log πj,

δt+1(j) := max
i

(
δt(i) + C2

(
log pij log fj(xt+1)

)
+ C4 log pij

)
,

that solves

max
sn

[
C2 log p(sn|xn) + C4 log p(sn)

]
= min

sn

[
C2R̄∞(sn|xn) + C4R̄∞(sn)

]
, ;

• the combination C1 > 0, C2 > 0, C3 = C4 = 0 gives the recursion

δ1(j) := C1 log p1(j|xn) + C2 log
(
πjfj(x1)

)
,

δt+1(j) := max
i

(
δt(i) + C2 log

(
pijfj(xt+1)

))
+ C1 log pt+1(j|xn) (7.3.24)

that solves

max
sn

[
C1

∑
t

log pt(st|xn) + C2 log p(sn|xn)
]

= min
sn

[
C1R̄1(s

n|xn) + C2R̄∞(sn|xn)
]
.

7.3.6 k-block alignments

Rabiner’s k blocks. In his celebrated tutorial [25], L. Rabiner proposes instead of
maximize the expected number of correctly decoded pairs or triples of (adjacent) states.
Hence, with k being the length of the overlapping block (k = 2, 3, . . .), he proposed to
maximize the sum

p(sk|xn) + p(sk+1
2 |xn) + p(sk+2

2 |xn) + · · ·+ p(sn
n−k+1|xn). (7.3.25)

With k = 1, (7.3.25) is the sum
∑

t pt(st|xn), hence in case k = 1, the maximizer of
(7.3.25) is PMAP-alignment.

Formally, maximizing (7.3.25) equals to minimizing the conditional risk

Rk(s
n|xn) := E

[
Lk(Y

n, sn)|Xn = xn], (7.3.26)

where Lk is the following loss function:

Lk(y
n, sn) := I{sk 6=yk} + I{sk+1

2 6=yk+1
2 } + I{sk+2

3 6=yk+1
3 } + · · ·+ I{sn

n−k+1 6=yn
n−k+1}.

It is natural to think that minimizers of Rk-risk – Rabiner’s k-block alignment –
“move” towards Viterbi paths “monotonically” as k increases to n. Indeed, when k = n,
then (7.3.25) is p(sn|xn), hence the maximizer of it is Viterbi alignment. However, as the
Example below shows, minimizers of Rk(s

n|xn) are not guaranteed to be admissible for
k > 1.
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Admissible k-blocks. The above-mentioned drawback (possible non-admissibility) is
easily overcome when the sum in (7.3.25) is replaced by the product. Or, equivalently, the
probabilities p(st+k−1

t |xn) are replaced by log p(st+k−1
t |xn) in the sum (7.3.25). Certainly,

except the case k = 1, these problems are not equivalent, but with the product in place of
the sum the k-block idea works well. Namely, the longer the block, the larger the resulting
path probability and, more importantly, the solution is clearly guaranteed to be positive
already for k = 2. Indeed, if p(sn) = 0, then there must exist a pair (transition) st+1

t such
that p(st+1

t ) = 0. Then p(st+1
t |xn) = 0 and if one multiplier equals to zero, so does the

whole product. If p(sn) > 0, but p(sn|xn) = 0, then there must exists at least one xt so
that fst(xt) = 0. That, in turn implies p(st|xn) = 0 and, therefore p(st+1

t |xn) = 0 for any
pair (st, st+1) that begins with st.

By replacing the probabilities p(st+k−1
t |xn) by log p(st+k−1

t |xn), we would get a natural
candidate for logarithmic version of Rk-risk as follows

log p(sk|xn) + log p(sk+1
2 |xn) + log p(sk+2

2 |xn) + · · ·+ log p(sn
n−k+1|xn).

However, to get a nice connection with above defined general family of alignments, we
define the logarithmic counterpart of Rk slightly different. Namely, let

Uk
1 := p(s1) · · · p(sk−2

1 )p(sk−1
1 )

Uk
2 := p(sk

1)p(sk+1
2 ) · · · p(sn−1

n−k)p(sn
n−k+1)

Uk
3 := p(sn

n−k+2)p(sn
n−k+3) · · · p(sn).

and let
Uk(s

n) := Uk
1 (sn) · Uk

2 (sn) · Uk
3 (sn).

The logarithmic version of Rk-risk will be defined as

R̄k(s
n) := − log Uk(s

n) = − log Uk
1 (sn)− log Uk

2 (sn)− log Uk
3 (sn).

Hence, with k = 3,

R̄3(s
n) = −(

log p(s1|xn) + log p(s2
1|xn)+

log p(s3
1|xn) + log p(s4

2|xn) + · · ·+ log p(sn−1
n−3|xn) + log p(sn

n−2|xn)

+ log p(sn
n−1|xn) + log p(sn|xn)

)
.

Clearly when k is small in comparison with n, the modification is minor. Also note that
for k = 1, the newly introduced risk equals to R̄1, hence the notation is correct. But the
next theorem shows that being so defined, the R̄k-risk has a nice interpretation. Let

v(k) = arg min
sn

Rk(s
n|xn).
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Theorem 7.3.1 For every xn ∈ X n, for every sn ∈ Yn and for every k = 2, . . . , n, it
holds

R̄k(s
n|xn) = (k − 1)R̄∞(sn|xn) + R̄1(s

n|xn).

Moreover, v(k) is admissible and

R̄∞(v(k)|xn) ≤ R̄∞(v(k − 1)|xn), R̄1(v(k)|xn) ≥ R̄1(v(k − 1)|xn).

For proof, see [30]. The main statement of the above-stated theorem is the first one saying
that our k-block alignment belongs to our general family of alignments (7.3.21) with the
constants C1 = 1 and C2 = k − 1. Hence, for any k, the optimal path v(k) can be found
via recursion (7.3.24).
We already know that C2 > 0 guarantees the admissibility of the solution, so the second
statement of the theorem, is an immediate consequence of the first one.
The last two statements guarantee that if k increases, then the likelihood of v(k) increases
and ∑

t

log pt(vt(k)|xn)

decreases. This is, indeed, what one expects from a k-block alignment.

Example. Consider the following four-state MC transition matrix

1

8




0 4 2 2
4 1 1 2
2 1 1 4
2 2 4 0




Suppose observations x1, x2, x3, x4 and the emission densities fs s = 1, 2, 3, 4 are such that

fs(x1) = fs(x4) =

{
1, if s = 2;
0, if s 6= 2. , fs(x3) = fs(x2) =

{
A > 1, if s = 1;
1, if s 6= 1.

Hence every admissible path begins and ends with 2.

Exercise: Show that

• Viterbi alignments are (2, 1, 2, 2), (2, 2, 1, 2), (2, 1, 4, 2), (2, 4, 1, 2);

• PMAP-alignment is (2, 1, 1, 2) – inadmissible;

• Rabiner’s 2-block alignment is (2, 1, 1, 2) – inadmissible;

• v(2) alignments are (2, 1, 4, 2) and (2, 4, 1, 2), both admissible.

References: About HMM’s in general, read [26, 27, 25, 28], about theory of segmentation
read [29, 30]
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