
INFORMATION THEORY AND STATISTICS

Lecture notes and exercises

Spring 2013

Jüri Lember

1

Literature:

1. T.M. Cover, J.A. Thomas "Elements of information theory", Wiley, 1991
ja 2006;

2. Yeung, Raymond W. "A first course of information theory", Kluwer, 2002;

3. Te Sun Han, Kingo Kobayashi "Mathematics of information and coding", AMS,
1994;

4. Csiszar, I., Shields, P. "Information theory and statistics : a tutorial", MA 2004;

5. Mackay, D. "Information theory, inference and learning algorithms", Cambridge
2004;

6. McEliece, R. "Information and coding", Cambridge 2004;

7. Gray, R. "Entropy and information theory", Springer 1990;

8. Gray, R. "Entropy and information theory", Springer 1990;

9. Gray, R. "Source coding theory", Kluwer, 1990;

10. Shields, P. "The ergodic theory of discrete sample paths", AMS 1996;

11. Dembo, A., Zeitouni, O. "Large deviation techniques and Applications", Springer
2010.

12. · · ·

Lecture notes:

https://noppa.aalto.fi/noppa/kurssi/mat-1.c/information_theory_and_statistics

2

1 Main concepts

1.1 (Shannon) entropy

In what follows, let X = {x1, x2, . . .} be a discrete (finite or countably infinite) alphabet.
Let X be a random variable taking values on X with distribution P . We shall denote

pi := P(X = xi) = P (xi).

Thus, for every A ⊂ X

P (A) = P(X ∈ A) =
∑

i:xi∈A

pi =
∑
x∈A

P (x).

Since X is fixed, the distribution P can be uniquely represented via the probabilities pi

i.e.
P = (p1, p2, . . .).

Recall that the support of P , denoted via XP is the set of letters having positive probability
(atoms), i.e.

XP := {x ∈ X : P (x) > 0}.
Also recall that for any g : X → R such that

∑
pi|g(xi)| < ∞, the expectation of g(X) is

defines as follows

Eg(X) =
∑

pig(xi) =
∑
x∈X

g(x)P (x) =
∑
x∈XP

g(x)P (x). (1.1)

NB! In what follows log := log2 and 0 log 0 := 0.

1.1.1 Definition and elementary properties

Def 1.1 The (Shannon) entropy of random variable X (distribution P) H(X) is

H(X) = −
∑

pi log pi = −
∑
x∈X

P (x) log P (x).

Remarks:

• H(X) depends on X via P , only.

• By (1.1)

H(X) = E
(− log P (X)

)
= E log

1

P (X)
.

• The sum
∑−pi log pi is always defined (since −pi log pi ≥ 0), but can be infinite.

Hence
0 ≤ H(X) ≤ ∞,

and H(X) = 0 iff for a letter x, X = x, a.s..

3

• Entropy does not depend on the alphabet X , it only depends on probabilities pi.
Hence, we can also write

H(p1, p2, . . .).

• In principle, any other logarithm logb can be used in the definition of entropy. Such
entropy is denoted by Hb i.e.

Hb(X) = −
∑

pi logb pi = −
∑
x∈X

P (x) logb P (x).

since logb p = logb a loga p, it holds

Hb(X) = (logb a)Ha(X),

so that Hb(X) = (logb 2)H(X) and He(X) = (ln 2)H(X). In information theory,
typically, log2 is used and such entropy is measured in bits. The entropy defined
with ln is measured in nats, the entropy defined with log10 is measured in dits.

The number − log p(xi) can be interpreted as the amount of information one gets if X
takes xi. The smaller p(xi), the bigger is the amount of information. The entropy is thus
the average amount of information or randomness X contains – the bigger H(X), the
more random is X. The concept of entropy was introduced by C. Shannon in his seminal
paper "A mathematical theory of communication" (1948).

Examples:

1 Let X = {0, 1}, p = P(X = 1), i.e. X ∼ B(1, p). Then

H(X) = −p log p− (1− p) log(1− p) =: h(p).

The function h(p) is called the binary entropy function . The function h(p) is
concave, symmetric around 1

2
and has maximum at p = 1

2
:

h(
1

2
) = −1

2
log

1

2
− 1

2
log

1

2
= log 2 = 1.

2 Consider the distributions

P :
a b c d e
1
2

1
4

1
8

1
16

1
16

Q :
a b c d
1
4

1
4

1
4

1
4

.

H(P) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 1

16
log

1

16
=

1

2
+

2

4
+

3

8
+

4

16
+

4

16
=

15

8
H(Q) = log 4 = 2.

Thus P is "less random ", although the number of atoms (the letters with positive
probability) is bigger.

4

1.1.2 Axiomatic approach

The entropy has the property of grouping

H(p1, p2, p3, . . .) = H(Σk
i=1pi, pk+1, pk+2, . . .) +

(
Σk

i=1pi

)
H

(p1

Σk
i=1pi

, . . . ,
pk

Σk
i=1pi

)
. (1.2)

The proof of (1.2) is Exercise 2. In a sense, grouping is a natural "additivity" property
that a measure of information should have. It turns out that when X is finite, then
grouping together with symmetry and continuity implies entropy.

More precisely, let for any m, Pm be the set all probability measures in m-dimensional
alphabet, i.e.

Pm :=
{

(p1, . . . , pm) : pi ≥ 0,
m∑

i=1

pi = 1
}

.

Suppose, for every m we have a function fm : Pm → [0,∞) that is a candidate for a
measure of information. The function fm is continuous if it is continuous with respect
to all coordinates, and it is symmetric, if it value is independent of the order of the
arguments.

Theorem 1.2 Let, for every m, fm : Pm → [0,∞) be symmetric functions satisfying the
following axioms:

A1 f2 is normalized, i.e. f2(
1
2
, 1

2
) = 1;

A2 fm is continuous for every m = 2, 3, . . .;

A3 it has the grouping property: for every 1 < k < m,

fm(p1, p2, . . . , pm) = fm−k+1(Σ
k
i=1pi, pk+1, . . . , pm)+

(
Σk

i=1pi

)
fk

(p1

Σk
i=1pi

, . . . ,
pk

Σk
i=1pi

)
.

A4 for every m < n, it holds fm(1
m

, . . . , 1
m

) ≤ fn(1
n
, . . . , 1

n
).

Then for every m,

fm(p1, . . . , pm) = −
m∑

i=1

pi log pi. (1.3)

Proof. Let, for every m,

g(m) := fm(
1

m
, . . . ,

1

m
).

By symmetry and applying A3 m times, we obtain

g(mn) = fnm

(1

nm
, . . . ,

1

nm︸ ︷︷ ︸
n

, . . . ,
1

nm
, . . . ,

1

nm︸ ︷︷ ︸
n

)

= fm(
1

m
. . . ,

1

m
) + fn

(1

n
, . . . ,

1

n

)
= g(m) + g(n).

5

Hence, for integers n and k, g(nk) = kg(n) and by A1, g(2k) = kg(2) = k i.e.

g(2k) = log(2k), ∀k.

Using A4, it is possible to show that the equality above holds for every integer n, i.e.

g(n) = log n, ∀n ∈ N.

Fix an arbitrary m and consider (p1, . . . , pm), where all components are rational. Then,
there exist integers k1, . . . , km and common denominator n such that pi = ki

n
, i = 1, . . . , m.

In this case,

g(n) = fn

(1

n
, . . . ,

1

n︸ ︷︷ ︸
k1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
k2

, . . . ,
1

n
, . . . ,

1

n︸ ︷︷ ︸
km

)

= fm(
k1

n
, . . . ,

km

n
) +

m∑
i=1

ki

n
fki

(
1

ki

, . . . ,
1

ki

)

= fm(p1, . . . , pm) +
m∑

i=1

ki

n
g(ki) = fm(p1, . . . , pm) +

m∑
i=1

pi log(ki).

Therefore,

fm(p1, . . . , pm) = log(n)−
m∑

i=1

pi log(ki) = −
m∑

i=1

pi log(
ki

n
) = −

m∑
i=1

pi log pi

so that (1.3) holds when all pi are rational. Now use continuity of fm to deduce that (1.3)
always holds.

Remark: One can drop the axiom A4.

1.1.3 Entropy is strictly concave

Jensen’s inequality. We shall often use Jensen’s inequality. Recall that a function
g : R→ R is convex, if for every x1, x2 and λ ∈ [0, 1], it holds

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).

A function g is strictly convex, if equality holds only for λ = 1 or λ = 0. A function g is
concave, if −g is convex.

Theorem 1.3 (Jensen’s inequality). Let g be convex function and X a random vari-
able such that E|g(X)| < ∞ and E|X| < ∞. Then

Eg(X) ≥ g(EX). (1.4)

If g is strictly convex, then (1.4) is equality if and only if X = EX a.s..

6

Mixture of distributions and the concavity of entropy. Let P1 and P2 be two
distributions given in X . (Note that any two discrete distributions can be defined in a
common alphabet like the union of their supports). The mixture of P1 and P2 is their
convex combination:

Q = λP1 + (1− λ)P2, λ ∈ (0, 1).

When X1 ∼ P1, X2 ∼ P2 and Z ∼ B(1, λ), then the following random variable has the
mixture distribution Q:

Y =

{
X1 if Z = 1,

X2 if Z = 0.

Clearly Q contains the randomness of P1 and P2. In addition, Z is random.

Proposition 1.1 Entropy is strictly concave i.e.

H(Q) ≥ λH(P1) + (1− λ)H(P2)

and the inequality is strict except when P1 = P2.
When XP1 and XP2 are disjoint, then

H(Q) = λH(P1) + (1− λ)H(P2) + h(λ). (1.5)

Proof. The function f(y) = −y log y is strictly concave (y ≥ 0). Thus, for every x ∈ X
−λP1(x) log P1(x)− (1− λ)P2(x) log P2(x) = λf

(
P1(x)

)
+ (1− λ)f

(
P2(x)

)

≤ f
(
λP1(x) + (1− λ)P2(x)

)
= −Q(x) log Q(x).

Sum over X to get
λH(P1) + (1− λ)H(P2) ≤ H(Q).

The inequality is strict, when there is at least one x ∈ X so that P1(x) 6= P2(x).
The proof of (1.5) is Exercise 5.

Example: Let P1 = B(1, p1) and P2 = B(1, p2) (both Bernoulli distributions). Then the
mixture λP1 + (1− λ)P2 is B(1, λp1 + (1− λ)p2). The concavity of entropy implies that
binary entropy function h(p) is strictly concave: h(λp1+(1−λ)p2) ≥ λh(p1)+(1−λ)h(p2).

1.2 Joint entropy

Let X and Y be random variables taking values in discrete alphabets X and Y , respec-
tively. Then (X,Y) is random vector with support in

X × Y = {(x, y) : x ∈ X , y ∈ Y}.
Let P be the (joint) distribution of (X, Y), a probability measure on X × Y . Denote

pij := P (xi, yj) = P
(
(X,Y) = (xi, yj)

)
= P(X = xi, Y = yj).

Joint distribution is often represented by the following table

7

X\Y y1 y2 . . . yj . . .
∑

x1 P (x1, y1) = p11 P (x1, y2) = p12 . . . p1j . . .
∑

j p1j = P (x1)

x2 P (x2, y1) = p21 P (x1, y2) = p22 . . . p2j . . .
∑

j p2j = P (x2)

· · ·
xi pi1 pi2 . . . pij . . .

∑
j pij = P (xi)

· · ·∑ ∑
i pi1 = P (y1)

∑
i pi2 = P (y2) . . .

∑
i pij = P (yj) . . . 1

In the table and in what follows (with some abuse of notation),

P (x) := P(X = x) and P (y) := P(Y = y)

denote marginal laws. The random variables X and Y are independent if and only if

P (x, y) = P (x)P (y) ∀x ∈ X , y ∈ Y .

The random vector (X,Y) can be considered as a random variable in a product alphabet
X × Y , and the entropy of such a random variable is

H(X,Y) = −
∑
ij

pij log pij = −
∑

(x,y)∈X×Y

P (x, y) log P (x, y) = E
(
− log P (X, Y)

)
. (1.6)

Def 1.4 The entropy H(X, Y) as defined in (1.6) is called the joint entropy of (X, Y).

Independent X and Y . When X and Y are independent, then

H(X,Y) = −
∑

(x,y)∈X×Y
P (x, y) log P (x, y) = −

∑
x∈X

∑
y∈Y

P (x)P (y)(log P (x) + log P (y))

= −
∑
x∈X

P (x) log P (x)−
∑
y∈Y

P (y) log P (y) = H(X) + H(Y).

The argument above can be restate as follows. For every x ∈ X and y ∈ Y it holds
log P (x, y) = log P (x) + log P (y) so that

log P (X, Y) = log P (X) + log P (Y).

Expectation is linear

H(X,Y) = −E
(
log P (X, Y)

)
= −E

(
log P (X) + log P (Y)

)

= −E log P (X)− E log P (Y) = H(X) + H(Y).

The joint entropy of several random variables. By analogy, the joint entropy of
several random variables X1, . . . , Xn is defined

H(X1, . . . , Xn) := −E log P (X1, . . . , Xn).

When all random variables are independent, then

H(X1, . . . , Xn) =
n∑

i=1

H(Xi).

8

1.3 Conditional entropy

1.3.1 Definition

Let x be such that P (x) > 0. Then define the conditional probabilities

P (y|x) := P(Y = y|X = x) =
P (x, y)

P (x)
.

The conditional distribution of Y given X = x is

y1 y2 y3 . . .
P (y1|x) P (y2|x) P (y2|x) . . .

.

The entropy of that distribution is

H(Y |x) :=: H(Y |X = x) := −
∑
y∈Y

P (y|x) log P (y|x).

Consider the function x 7→ H(Y |x). Applying it to the random variable X ∼ P , we get a
new random variable (the function of X) with distribution

H(Y |x1) H(Y |x2) H(Y |x3) . . .
P (x1) P (x2) P (x3) . . .

.

and expectation ∑
x∈XP

H(Y |x)P (x).

Def 1.5 The conditional entropy of Y given X ∼ P is

H(Y |X) :=
∑
x∈XP

H(Y |x)P (x) = −
∑
x∈XP

P (x)
∑
y∈Y

log P (y|x)P (y|x)

= −
∑
x∈XP

∑
y∈Y

log P (y|x)P (x, y) = −E
(
log P (Y |X)

)
.

Remarks:

• When X and Y are independent, then P (y|x) = P (y) ∀x ∈ XP , y ∈ Y so that
H(Y |X) = H(Y).

• In general H(X|Y) 6= H(Y |X) (take independent X,Y such that H(X) 6= H(Y)).

• H(Y |X) = 0 iff for a function f , Y = f(X). Indeed, H(Y |X) = 0 iff

H(Y |X = x) = 0 for every x ∈ XP .

Hence, there exists f(x) such that P(Y = f(x)|X = x) = 1 or Y = f(X).

9

Joint entropy for more than two random variables. Let X,Y, Z be random vari-
ables with supports X ,Y and Z. Considering the vector (X, Y) (or the vector (Y, Z)) as
a random variable, we have

H(X, Y |Z) := −
∑
z∈Z

P (z)
∑

(x,y)∈X×Y
P (x, y|z) log P (x, y|z)

= −
∑

(x,y,z)∈X×Y×Z
log P (x, y|z)P (x, y, z) = −E log P (X,Y |Z)

H(X|Y, Z) := −
∑

(y,z)∈Y×Z
P (y, z)

∑
x∈X

P (x|y, z) log P (x|y, z)

= −
∑

(x,y,z)∈X×Y×Z
log P (x|y, z)P (x, y, z) = −E log P (X|Y, Z).

Moreover, given any set X1, . . . , Xn of random variables, one can similarly define condi-
tional entropies

H(Xn, Xn−1, . . . , Xj|Xj−1, . . . , X1).

1.3.2 Chain rules for entropy

Lemma 1.1 (Chain rule) Let X1, . . . , Xn be random variables. Then

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + H(X3|X1, X2) + · · ·+ H(Xn|X1, . . . , Xn−1).

Proof. For any (x1, . . . , xn) such that P (x1, . . . , xn) > 0, it holds

P (x1, . . . , xn) = P (x1)P (x2|x1)P (x3|x1, x2) · · ·P (xn|x1, . . . , xn),

so that

H(X1, . . . , Xn) = −E log P (X1, . . . , Xn)

= −E log P (X1)− E log P (X2|X1)− · · · − E log P (Xn|X1, . . . , Xn−1)

= H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . , Xn−1).

In particular, for any random vector (X, Y)

H(X, Y) = H(X) + H(Y |X) = H(Y) + H(X|Y).

Lemma 1.2 (Chain rule for conditional entropy) Let X1, . . . , Xn, Z be random vari-
ables. Then

H(X1, . . . , Xn|Z) = H(X1|Z)+H(X2|X1, Z)+H(X3|X1, X2, Z)+· · ·+H(Xn|X1, . . . , Xn−1, Z).

10

Proof. For every (x1, . . . , xn, z) such that P (x1, . . . , xn, z) > 0, it holds

P (x1, . . . , xn|z) = P (x1|z)P (x2|x1, z)P (x3|x2, x1, z) · · ·P (xn|x1, . . . , xn−1, z)

so that

log P (X1, . . . , Xn|Z) = log P (X1|Z) + log P (X2|X1, Z) + · · ·+ P (Xn|X1, . . . , Xn−1, Z).

Now take expectation.

In particular, for any random vector (X, Y, Z)

H(X,Y |Z) = H(X|Z) + H(Y |X, Z) = H(Y |Z) + H(X|Y, Z).

1.4 Kullback-Leibler distance

1.4.1 Definition

NB! In what follows,

0 log(
0

q
) := 0, if q ≥ 0 and p log(

p

0
) := ∞ if p > 0.

Def 1.6 Let P and Q two distributions on X . The Kullback-Leibler distance (Kullback-
Leibler divergence, relative entropy, informational divergence) between probability distri-
butions P and Q is defined as

D(P ||Q) :=
∑
x∈X

P (x) log
P (x)

Q(x)
. (1.7)

Where X ∼ P , then

D(P ||Q) = E
(
log

P (X)

Q(X)

)
.

When X ∼ P and Y ∼ Q, then

D(X||Y) := D(P ||Q).

Def 1.7 Let, for any x ∈ X , P (y|x) and Q(y|x) be two (conditional) probability distribu-
tions on Y. Let P (x) be a probability distribution on X. The conditional Kullback-
Leibler distance is the K-L distance of P (y|x) and Q(y|x) averaged over P

D(P (y|x)||Q(y|x)) =
∑

x

P (x)
∑

y

P (y|x) log
P (y|x)

Q(y|x)
=

∑
x

∑
y

P (x, y) log
P (y|x)

Q(y|x)
= E log

P (Y |X)

Q(Y |X)
,

where P (x, y) := P (y|x)P (x) and (X, Y) ∼ P (x, y).

11

Remarks:

• Note that log P (x)
Q(x)

is not always non-negative so that in case of infinite X , we have
to show that the sum of the series in (1.7) is defined. Let us do it. Define

X+ :=
{

x ∈ X :
P (x)

Q(x)
> 1

}
, X− :=

{
x ∈ X :

P (x)

Q(x)
≤ 1

}
.

The series over X− is absolutely convergent:

∑

x∈X−
|P (x) log

P (x)

Q(x)
| =

∑

x∈X−
P (x) log

Q(x)

P (x)
≤

∑

x∈X−
P (x)

Q(x)

P (x)
≤ 1.

If ∑

x∈X+

P (x) log
P (x)

Q(x)
< ∞.

the series (1.7) is convergent, otherwise its sum is ∞.

• As we shall show below, D(P ||Q) ≥ 0 with equality only if P = Q. However, in
general D(P ||Q) 6= D(Q||P). Hence K-L distance is not a metric (true "distance").
Moreover, it does not satisfy triangular inequality (Exercise 7).

K-L distance measures the amount of "average surprise", that a distribution P provides
us, when we believe that the distribution is Q. If there is a x′ ∈ X such that Q(x′) = 0
(we believe x′ never occurs), but P (x′) > 0 (it still happens sometimes), then

P (x′) log
(P (x′)

Q(x′)

)
= ∞

implying that D(P ||Q) = ∞. This matches with intuition – seeing an impossible event
to happen is extremely surprising (a miracle). On the other hand, if there is a letter
x′′ ∈ X such that Q(x′′) > 0 (we believe it might happen), but P (x′′) = 0 (it actually
never happens), then

P (x′′) log
(P (x′′)

Q(x′′)

)
= 0.

also this matches with the intuition – we are not largely surprised if something that might
happen actually never does. In this point of view the asymmetry of K-L distance is rather
natural.

Example: Let P = B(1, 1
2
), Q = B(1, q). Then

D(P ||Q) =
1

2
log(

1

2q
) +

1

2
log(

1

2(1− q)
) = −1

2
log(4q(1− q)) →∞, if q → 0

D(Q||P) =q log(2q) + (1− q) log(2(1− q)) → 1 if q → 0.

12

1.4.2 K-L distance is non-negative: Gibbs inequality and its consquences

Proposition 1.2 (Gibbs inequality) D(P ||Q) ≥ 0, with equality iff P = Q.

Proof. When D(P ||Q) = ∞, then inequality trivially holds. Hence consider the situation
D(P ||Q) < ∞ i.e., series (1.7) converges absolutely (when X infinite).
Let X ∼ P . Define

Y :=
Q(X)

P (X)

and let g(x) := − log(x). Note that g is strictly convex. We shall apply Jensen’s inequality.
Let us first convince that all expectations exists

E|g(Y)| =
∑
x∈X

|−log
Q(x)

P (x)
|P (x) =

∑
x∈X

| log
P (x)

Q(x)
|P (x) < ∞, E|Y | = EY =

∑
x∈X

Q(x)

P (x)
P (x) = 1.

By Jensen’s inequality

D(P ||Q) = E
(
log

P (X)

Q(X)

)
= E

(
− log

Q(X)

P (X)

)
= Eg(Y) ≥ g(EY) = − log(1) = 0,

with D(P ||Q) = 0 if and only if Y = 1 a.s. or Q(x) = P (x) for every x ∈ XP . This
implies Q(x) = P (x) for every x ∈ X .

Corollary 1.1 (log-sum inequality) Let a1, a2, . . . and b1, b2, . . . nonnegative numbers
so that

∑
ai < ∞ and 0 <

∑
bi < ∞. Then

∑
ai log

ai

bi

≥ (
∑

ai) log

∑
ai∑
bi

, (1.8)

with equality iff ai

bi
= c ∀i.

Proof. Let
a′i =

ai∑
j aj

, b′i =
bi∑
j bj

.

Hence (a′1, a
′
2, . . .) and (b′1, b

′
2, . . .) are probability measures so that from Gibbs inequality,

it follows

0 ≤
∑

a′i log
a′i
b′i

=
∑ ai∑

j aj

log

ai∑
j aj

bi∑
j bj

=
1∑
j aj

[∑
ai log

ai

bi

− (
∑

ai) log

∑
aj∑
bj

]
.

Since ∑
ai log

∑
aj∑
bj

< ∞,

the inequality (1.8) follows. We know that D((a′1, a
′
2, . . .)||(b′1, b′2, . . .)) = 0 iff a′i = b′i.

This, however, implies that
ai

bi

=

∑
j aj∑
j bj

=: c, ∀i.

13

Remark: Note that log-sum inequality and Gibbs inequality are equivalent.

From Gibbs (or log-sum) inequality, it also follows that for finite X , the distribution
with the biggest entropy is uniform. Note that if U is uniform distribution over X , then
H(U) = log |X |.
Corollary 1.2 Let |X | < ∞. Then, for any distribution P , it holds H(P) ≤ log |X |,
with equality iff P is uniform over |X |.
Proof. Let U be uniform distribution over X , i.e. U(x) = |X |−1 ∀x ∈ X . Then

D(P ||U) =
∑
x∈X

P (x) log
P (x)

U(x)
= log |X | −H(P) ≥ 0.

The equality holds iff U(x) = P (x) for every x ∈ X , i.e. P = U .

Pinsker inequality. There are several ways to measure the distance between different
probability measures on X . In statistics, a common measure is so-called l1 or total
variation distance : for any two probability measures P1 and P2 on X :

‖P1 − P2‖ :=
∑
x∈X

|P1(x)− P2(x)|.

It is easy to see (Exercise 8)

‖P1 − P2‖ = 2 sup
B⊆X

|P1(B)− P2(B)| = 2|P1(A)− P2(A)| ≤ 2, (1.9)

where
A := {x ∈ X : P1(x) ≥ P2(x)}.

The convergence in total variation, i.e. ‖Pn − P‖ → 0 implies that for every B ⊂ X ,
Pn(B) → P (B). In particular, for any x ∈ X , Pn(x) → P (x). On the other hand, it
is possible to show (Sheffe’s theorem) that the convergence Pn(x) → P (x) for every x
implies ‖Pn − P‖ → 0. Thus

‖Pn − P‖ → 0 ⇔ Pn(x) → P (x), ∀x ∈ X .

In what follows, the convergence Pn → P is always meant in total variation. Note that
for finite X this is equivalent to the convergence in usual (Euclidian) distance. Pinsker
inequality implies that convergence in K-L distance i.e. D(Pn||P) → 0 or D(P ||Pn) → 0
implies Pn → P .

Theorem 1.8 (Pinsker inequality) For every two probability measures P1 and P2 on
X , it holds

D(P1||P2) ≥ 1

2 ln 2
‖P1 − P2‖2. (1.10)

The proof of Pinsker inequality is based on log-sum inequality.

14

Convexity of K-L distance. Let P1, P2, Q1, Q2 be the distributions on X . consider
the mixtures

λP1 + (1− λ)P2 ja λQ1 + (1− λ)Q2.

Corollary 1.3

D
(
λP1 + (1− λ)P2||λQ1 + (1− λ)Q2

) ≤ λD(P1||Q1) + (1− λ)D(P2||Q2). (1.11)

Proof. Fix x ∈ X . Log-sum inequality:

λP1(x) log
λP1(x)

λQ1(x)
+ (1− λ)P2(x) log

(1− λ)P2(x)

(1− λ)Q2(x)

≥
(
λP1(x) + (1− λ)P2(x)

)
log

λP1(x) + (1− λ)P2(x)

λQ1(x) + (1− λ)Q2(x)
.

Sum over X .

Take Q1 = Q2 = Q. Then from (2.2), it follows that the function P 7→ D(P ||Q) is
convex. Similarly one gets that Q 7→ D(P ||Q) is convex. When they are finite, then both
functions are also strictly convex. Indeed:

D(P ||Q) =
∑

P (x) log P (x)−
∑

P (x) log Q(x) = −
∑

P (x) log Q(x)−H(P). (1.12)

The function P 7→ ∑
P (x) log Q(x) is linear, P 7→ H(P) strictly concave. The difference

is, thus, strictly convex (when finite). From (1.12) also the strict convexity of Q 7→
D(P ||Q) follows.

Continuity of K-L distance for finite X . In finite-dimensional space, a finite con-
vex function is continuous. Hence if |X | < ∞ and the function P 7→ D(P ||Q) is finite
(in an open set), then it is continuous (in that set). The same holds for the function
Q 7→ D(P ||Q).

Example: The finiteness is important. Let X = {a, b}, and let for every n the mea-
sure Pn be such that Pn(a) = pn, where pn > 0 and pn → 0. Let P (a) = 0. Clearly,
Pn → P , but for every n

∞ = D(Pn||P) 6→ D(P ||P) = 0.

Conditioning increases K-L distance. Let, for every x ∈ X , P1(y|x) and P2(y|x) be
conditional probability distributions, and let P (x) a probability measure on X . Let

Pi(y) :=
∑

x

Pi(y|x)P (x), where i = 1, 2.

Then
D(P1(y|x)||P2(y|x)) ≥ D(P1||P2). (1.13)

Proof of (1.13) is Exercise 16.

15

1.5 Mutual information

Let (X,Y) be random vector with distribution P (x, y), (x, y) ∈ X × Y . As usually, let
P (x) and P (y) be the marginal distributions, i.e. P (x) is distribution of X and P (y) is
distribution of Y .

Def 1.9 The mutual information I(X; Y) of X and Y is K-L distance between the
joint distribution P (x, y) and the product distribution P (x)P (y)

I(X; Y) :=
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
= D

(
P (x, y)||P (x)P (y)

)
= E

(
log

P (X, Y)

P (X)P (Y)

)
.

Hence I(X; Y) is K-L distance between (X, Y) and a vector (X ′, Y ′), where X ′ and Y ′

are distributed as X and Y , but unlike X and Y , the random variables X ′ and Y ′ are
independent.

Properties:

• I(X; Y) depends on joint distribution P (x, y).

• 0 ≤ I(X; Y).

• mutual information is symmetric I(X; Y) = I(Y ; X).

• I(X; Y) = 0 iff X, Y are independent.

• The following relation is important:

I(X; Y) = H(X)−H(X|Y) = H(Y)−H(Y |X). (1.14)

For the proof, note

I(X; Y) = E log
P (X,Y)

P (X)P (Y)
= E log

P (X|Y)P (Y)

P (X)P (Y)
= E log

P (X|Y)

P (X)

= E log P (X|Y)− E log P (X) = H(X)−H(X|Y).

By symmetry, the roles of X and Y can be changed.

Hence the mutual information is the reduction of randomness of X due to the
knowledge of Y . When X and Y are independent, then H(X|Y) = H(X), and
I(X; Y) = 0. On the other hand, when X = f(Y), then H(X|Y) = 0 so that
I(X; Y) = H(X). In particular

I(X; X) = H(X)−H(X|X) = H(X).

Therefore, sometimes entropy is referred to as self-information.

16

• Recall chain rule: H(X|Y) = H(X,Y)−H(Y). Hence

I(X; Y) = H(X) + H(Y)−H(X, Y). (1.15)

• Conditioning reduces entropy

H(X|Y) ≤ H(X),

because H(X)−H(X|Y) = I(X; Y) ≥ 0.

Recall H(X|Y) =
∑

y H(X|Y = y)P (y). The fact that sum is smaller than H(X)
does not imply that H(X|Y = y) ≤ H(X) for every y. As the following little
counterexample shows, it need not to be case (check!)

Y\X a b
u 0 3

4

v 1
8

1
8

• For any random vector (X1, . . . , Xn), it holds

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi),

with equality iff all components are independent. For the proof use chain rule

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + H(X3|X1, X2) + · · ·+ H(Xn|X1, . . . , Xn−1)

and apply the fact that conditioning reduces entropy.

Conditional mutual information. Let X, Y, Z be random variables, let Z be the
support of Z.

Def 1.10 The conditional mutual information of X, Y given Z is

I(X; Y |Z) :=H(X|Z)−H(X|Y, Z) = E log
P (X|Y, Z)

P (X|Z)

=E log
P (X|Y, Z)P (Y |Z)

P (X|Z)P (Y |Z)
= E log

P (X,Y |Z)

P (X|Z)P (Y |Z)

=
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)

=
∑

z

P (z)
∑
y,x

P (x, y|z) log
P (x, y|z)

P (x|z)P (y|z)

=
∑

z

D
(
P (x, y|z)||P (x|z)P (y|z)

)
P (z).

17

Properties:

•
I(X; Y |Z) ≥ 0,

with equality iff X and Y are conditionally independent:

P (x, y|z) = P (x|z)P (y|z), ∀x ∈ X , y ∈ Y , z ∈ Z. (1.16)

For proof note that I(X; Y |Z) = 0 iff for every z ∈ Z, it holds

D
(
P (x, y|z)||P (x|z)P (y|z)

)
= 0.

This means conditional independence.

• The proof of following equalities is Exercise 18

I(X; X|Z) = H(X|Z)

I(X; Y |Z) = H(Y |Z)−H(Y |X, Z)

I(X; Y |Z) = H(X|Z) + H(Y |Z)−H(X, Y |Z).

In addition, the following equality holds

I(X; Y |Z) = H(X; Z) + H(Y ; Z)−H(X,Y, Z)−H(Z). (1.17)

• Chain rule for mutual information

I(X1, . . . , Xn; Y) = I(X1; Y)+I(X2; Y |X1)+I(X3; Y |X1, X2)+· · ·+I(Xn; Y |X1, . . . , Xn−1).

For proof use chain rule for entropy and conditional entropy:

I(X1, . . . , Xn; Y) =H(X1, . . . , Xn)−H(X1, . . . , Xn|Y)

=H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . , Xn−1)

−H(X1|Y)−H(X2|X1, Y)− · · · −H(Xn|X1, . . . , Xn−1, Y).

• Chain rule for conditional mutual information:

I(X1, . . . , Xn; Y |Z) = I(X1; Y |Z)+I(X2; Y |X1, Z)+· · ·+I(Xn; Y |X1, . . . , Xn−1, Z).

Proof is similar.

18

1.6 Fano’s inequality

Let X be a (unknown) random variable and X̂ a related random variable – an estimate
of X. Let

Pe := P(X 6= X̂)

be the probability of mistake made by estimation. If Pe = 0, then X = X̂ a.s. so that
H(X|X̂) = 0. Therefore, it is natural to expect that when Pe is small, then H(X|X̂)
should also be small. Fano’s inequality quantifies that idea.

Theorem 1.11 (Fano’s inequality) Let X and X̂ be random variables on X . Then

H(X|X̂) ≤ h(Pe) + Pe log(|X | − 1), (1.18)

where h is binary entropy function.

Proof. Let

E =

{
1 if X̂ 6= X,

0 if X̂ = X.

Hence
E = I{X̂ 6=X}, E ∼ B(1, Pe).

Chain rule for entropy:

H(E, X|X̂) = H(X|X̂) + H(E|X, X̂) = H(X|X̂), (1.19)

because H(E|X, X̂) = 0 (why?)
On the other hand,

H(E, X|X̂) = H(E|X̂) + H(X|E, X̂) ≤ H(E) + H(X|E, X̂) = h(Pe) + H(X|E, X̂).

Note

H(X|E, X̂) =
∑
x∈X

P(X̂ = x,E = 1)H(X|X̂ = x,E = 1)

+
∑
x∈X

P(X̂ = x,E = 0)H(X|X̂ = x,E = 0).

Given X̂ = x and E = 0, we have X = x and then H(X|X̂ = x,E = 0) = 0 or

H(X|E, X̂) =
∑
x∈X

P(X̂ = x,E = 1)H(X|X̂ = x,E = 1).

If E = 1 and X̂ = x , then X ∈ X\x, so that H(X|X̂ = x,E = 1) ≤ log(|X | − 1). To
summarize:

H(X|E, X̂) ≤ Pe log(|X | − 1).

Form (1.19) we obtain

H(X|X̂) ≤ Pe log(|X | − 1) + h(Pe).

19

Corollary 1.4

H(X|X̂) ≤ 1 + Pe log |X |, ehk Pe ≥ H(X|X̂)− 1

log |X | .

If |X | < ∞, then Fano’s inequality implies: if Pe → 0, then H(X|X̂) → 0. When
|X | = ∞, then Fano’s inequality is trivial and such an implication might not exists.

Example: Let Z ∼ B(1, p) and let Y be such a random variable that Y > 0 and
H(Y) = ∞. Define X as follows

X =

{
0 if Z = 0,

Y if Z = 1.

Let X̂ = 0 a.s.. Then Pe = P(X > 0) = P(X = Y) = P(Z = 1) = p. But

H(X|X̂) = H(X) ≥ H(X|Z) = pH(Y) = ∞.

Then for every p > 0, clearly H(X|X̂) = ∞ and therefore H(X|X̂) 6→ 0, when Pe ↘ 0.

When Fano’s inequality is an equality? Inspecting the proof reveals that equality
holds iff for every x ∈ X ,

H(X|X̂ = x,E = 1) = log(|X | − 1) (1.20)

and
H(E|X̂) = H(E). (1.21)

The equality (1.20) means that the conditional distribution of X given X 6= X̂ = x is
uniform over all remaining alphabet X\x. That, in turn, means that to every xi ∈ X
corresponds pi so that

P(X̂ = xi, X = xj) = pi, ∀j 6= i.

In other words, the joint distribution of (X̂, X)

X̂\X x1 x2 · · · xn

x1 P(X̂ = x1, X = x1) P(X̂ = x1, X = x2) · · · P(X̂ = x1, X = xn)

x2 P(X̂ = x2, X = x1) P(X̂ = x2, X = x2) · · · P(X̂ = x2, X = xn)
· · · · · · · · · · · · · · ·
xn P(X̂ = xn, X = x1) · · · · · · P(X̂ = xn, X = xn)

is such that in every row, all elements outside the main diagonal are equal (to a constant
depending on the row). The relation (1.21) means that for every x ∈ X , it holds that
P (X = x|X̂ = x) = 1− Pe (in every row the probability in main diagonal divided by the

20

sum of the whole row equals to 1− Pe. A joint distribution satisfying both requirements
(1.20) and (1.21) is, for example,

X̂\X a b c
a 3

10
1
10

1
10

b 1
25

3
25

1
25

c 3
50

3
50

9
50

.

with this distribution, Pe = 2
5
, log(|X | − 1) = 1 so that

Pe log(|X | − 1) + h(Pe) =
2

5
+

3

5
log

5

3
+

2

5
log

5

2
=

3

5
log

5

3
+

2

5
log 5.

On the other hand

H(X|X̂ = a) = H(X|X̂ = b) = H(X|X̂ = c) =
3

5
log

5

3
+

2

5
log 5,

implying that

H(X|X̂) =
3

5
log

5

3
+

2

5
log 5.

Therefore, Fano’s inequality is an equality.

1.7 Data processing inequality

1.7.1 Finite Markovi chain

Def 1.12 The random variables X1, . . . , Xn with supports X1, . . . ,Xn form a Markov chain
when for every xi ∈ Xi and m = 2, . . . , n− 1

P(Xm+1 = xm+1|Xm = xm, . . . , X1 = x1) = P(Xm+1 = xm+1|Xm = xm). (1.22)

Then X1, . . . , Xn is Markov chain iff for every x1, . . . , xn such that xi ∈ Xi

P (x1, . . . , xn) = P (x1, x2)P (x3|x2) · · ·P (xn|xn−1).

The fact that X1, . . . , Xn form a Markov chain is in information theory denoted as

X1 → X2 → · · · → Xn.

Thus X → Y → Z iff
P (x, y, z) = P (x)P (y|x)P (z|y).

We shall now list (without proofs) some elementary properties of Markov chains.

21

Properties:

• If X1 → X2 → · · · → Xn, then Xn → Xn−1 → · · · → X1 (reversed MC is also a
MC).

• Every sub-chain Markov chain is a Markov chain: if X1 → X2 → · · · → Xn, then
Xn1 → Xn2 → · · · → Xnk

.

• If X1 → X2 → · · · → Xn, then for every m < n and xi ∈ Xi

P (xn, . . . , xm+1|xm, . . . , x1) = P (xn, . . . , xm+1|xm). (1.23)

• X1 → · · · → Xn iff for every m = 2, . . . , n − 1 the random variables X1, . . . , Xm−1

and Xm+1, . . . , Xn are conditionally independent given Xm: for every xm ∈ Xm,

P (x1, . . . , xm−1, xm+1, . . . , xn|xm) = P (x1, . . . , xm−1|xm)P (xm+1, . . . , xn|xm).
(1.24)

1.7.2 Data processing inequality

Lemma 1.3 (Data processing inequality) When X → Y → Z, then

I(X; Y) ≥ I(X; Z),

with equality iff X → Z → Y .

Proof. From X → Y → Z it follows that X and Z are conditionally independent given
Y . This implies I(X; Z|Y) = 0 and from the chain rule for entropy, it follows

I(X; Y, Z) = I(X; Z) + I(X; Y |Z) = I(X; Y) + I(X; Z|Y) = I(X; Y). (1.25)

Since I(X; Y |Z) ≥ 0,we obtain I(X; Z) ≤ I(X; Y) and the equality holds iff I(X; Y |Z) =
0 or the random variables X and Y are conditionally independent given Z. That means
X → Z → Y .

Let X be an unknown random variable we are interested in. Instead of X, we know
Y (data) giving us I(X; Y) bits of information. Would it be possible to process the data
so that the amount of information about X increases? The data are possible to pro-
cess deterministically applying a deterministic function g, obtaining g(Y). Hence we have
Markov chain X → Y → g(Y) and from data processing inequality I(X; Y) ≥ I(X; g(Y))
it follows that g(Y) does not give more information about X as Y . Another possibility
is to process Y by applying additional randomness independent of X. Since this addi-
tional randomness is independent of X, then X → Y → Z is still Markov chain and from
data processing inequality I(X; Y) ≥ I(X; Z). Hence, the data processing inequality
postulates well-known fact: it is not possible to increase information by processing the
data.

22

Corollary 1.5 When X → Y → Z, then

H(X|Z) ≥ H(X|Y).

Proof. Exercise 23.

Corollary 1.6 When X → Y → Z, then

I(X; Z) ≤ I(Y ; Z), I(X; Y |Z) ≤ I(X; Y).

Proof. Exercise 23.

1.7.3 Sufficient statistics

Let {Pθ} be a family of probability distributions – model. Let X be a random sample from
the distribution Pθ. Recall that n-elemental random sample can always be considered as a
random variable taking values in X n. Clearly the sample depends on chosen distribution
Pθ or, equivalently, on its index — parameter – θ. Let T (X) be any statistic (function of
the sample) giving an estimate to unknown parameter θ. Let us consider the Bayesian
approach, where θ is a random variable with (prior) distribution π. Then θ → X → T (X)
is Markov chain and from data processing inequality

I(θ; T (X)) ≤ I(θ; X).

When the inequality above is an equality, then T (X) gives as much information about θ
as X and we know that the equality implies θ → T (X) → X. By definition of Markov
chain, then for every sample x ∈ X n

P(X = x|T (X) = t, θ) = P(X = x|T (X) = t)

or given the value of T (X), the distribution of sample is independent of θ. In statistics,
a statistic T (X) having such a property is called sufficient .

Corollary 1.7 A statistic T is sufficient iff for every distribution π of θ the following
equality holds true

I(θ; T (X)) = I(θ; X).

Example: Let {Pθ} the family of all Bernoulli distributions. A statistic T (X) =
∑n

i=1 Xi

is sufficient, because

P(X1 = x1, . . . , Xi = xi|T (X) = t, θ) =

{
0 if

∑
i xi 6= t,

1

(n
t)

if
∑

i xi = t.

Indeed: if
∑

i xi = t, then

P(X1 = x1, . . . , Xn = xn|T (X) = t, θ) =
P(X1 = x1, . . . , Xn = xn, T (X) = t, θ)

P(T (X) = t, θ)

=
θt(1− θ)n−tπ(θ)∑

x1,...,xn:
∑

i xi=t θ
t(1− θ)n−tπ(θ)

=
1(
n
t

) ,

because given sum t (the number of ones) there are exactly
(

n
t

)
possibilities for different

samples.

23

1.8 Entropy rate of a stochastic process

Let us consider a stochastic process {Xn}∞n=1.

Def 1.13 The entropy rate of a stochastic process {Xn}∞n=1is

HX := lim
n→∞

1

n
H(X1, . . . , Xn),

provided the limit exists.

Examples:

• let {Xn}∞n=1 i.i.d. random variables from the distribution P , i.e. Xi ∼ P . then

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
1

n

n∑
i=1

H(Xi) = lim
n→∞

H(P).

Thus, in i.i.d. case the entropy rate of the process equals to the entropy of X1.

• Let {Xn}∞n=1 be independent random variables

1

n
H(X1, . . . , Xn) =

1

n

n∑
i=1

H(Xi).

The limit need not always exists so that the entropy rate is not always defined for
that process.

• Let X1, X2, . . . i.i.d. random variables Xi ∼ P . Let X = Z. Consider random walk
{Sn}∞n=0, s.t.

S0 = 0, S1 = X1, S2 = X1 + X2, . . . , Sn = X1 + · · ·+ Xn.

The entropy rate of random walk is HS = H(P). The proof of that is Exercise 32.

The limit H ′
X. Consider the limit (when exists)

H ′
X := lim

n
H(Xn|X1, . . . , Xn−1).

We shall now show that for a large class of stochastic processes, called stationary processes,
the limit H ′

X always exists.

Def 1.14 A stochastic process {Xn}∞n=1 is stationary , if for every n ≥ 1 and every
k ≥ 1 the random vectors

(X1, . . . , Xn) and (Xk+1, . . . , Xk+n)

have the same distributions.

24

Hence, when {Xn}∞n=1 is stationary, then all random variables X1, X2, . . . have the same
distributions, all two-dimensional random vectors (X1, X2), (X2, X3), . . . have the same
distribution, the vectors (X1, X2, X3), (X2, X3, X4), . . . have the same distribution etc.

Proposition 1.3 When {Xn}∞n=1 is stationary, then the limit H ′
X always exists.

Proof. Since {Xn}∞n=1 is stationary, then for every n the random vectors (X1, . . . , Xn)
and (X2, . . . , Xn+1) have the same distributions. Hence, for every n

H(Xn|X1, . . . , Xn−1) = H(Xn+1|X2, . . . , Xn).

Therefore

H(Xn+1|X1, . . . , Xn) ≤ H(Xn+1|X2, . . . , Xn) = H(Xn|X1, . . . , Xn−1),

so that the sequence {H(Xn|X1, . . . , Xn−1)} is non-negative and non-increasing. Such a
sequence has always a limit.

Next, we show that for a stationary process the entropy rate is always defined and equals
to H ′

X . We need Cesaro’s lemma

Lemma 1.4 (Cesaro) Let {an} non-negative real numbers with a1 > 0 and
∑

n an = ∞.
Denote bn :=

∑n
i=1 ai. Let xn → x be arbitrary convergent sequence. Then

1

bn

n∑
i=1

aixi → x, when n →∞.

In a special case an = 1, we obtain
x1 + . . . + xn

n
→ x.

Theorem 1.15 When {Xn}∞n=1 is a stationary process, then HX always exists and H ′
X =

HX .

Proof. From the chain rule for entropy:

1

n
H(X1, . . . , Xn) =

1

n

n∑

k=1

H(Xk|X1, . . . , Xk−1).

Use H(Xk|X1, . . . , Xk−1) → H ′
X , together with Cesaro lemma to obtain

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
1

n

n∑

k=1

H(Xk|X1, . . . , Xk−1) = H ′
X .

Hence, every stationary process has an entropy rate that equals to H ′
X . It might be

0 even if X is still random (can you find an example of such process?). On the other
hand, also a non-stationary processes might have an entropy rate (which of the examples
above was non-stationary).

25

1.8.1 Entropy rate of Markov chain

Determining a entropy rate of a stochastic process is, in general, not an easy task. In this
sub-subsection, we find the entropy rate of stationary Markov chain.

Let {Xn}∞n=1 be a random process where all random variables Xi are taking the values on
discrete alphabet X .

Def 1.16 The random process {Xn}∞n=1 is Markov chain , if for every m ≥ 1 and
x1, . . . , xm ∈ X such that P(Xm = xm, . . . , X1 = x1) > 0, (1.22) holds, i.e.

P(Xm+1 = xm+1|Xm = xm, . . . , X1 = x1) = P(Xm+1 = xm+1|Xm = xm). (1.26)

In therminology of Markov chains, the elements of X are called states, and the chain is
called time homogenous, if the the right hand side of equality (1.26) is independent of m.
In this case, for every m and xi, xj ∈ X

P(Xm+1 = xj|Xm = xi) = P (X2 = xj|X1 = xi) =: Pij.

The matrix P = (Pij) is transition matrix of time-homogenous MC {Xn}. Let π(i) = π(xi)
– initial distribution – be the distribution of X1. Then

P(X2 = xj) =
∑
xi∈X

P(X2 = xj|X1 = xi)P(X1 = xi) =
∑

i

Pijπ(i)

so that the distribution of X2 is πT P . Similarly, the distribution of Xk is πT P k. Now, it is
not hard to see that the distribution of any finite vector (Xk, . . . , Xk+l) is fully determined
by transition matrix P and initial distribution π. Markov chain {Xn} is stationary iff π
is such that πT P = π or π(j) =

∑
i π(i)Pij ∀ j. Such initial distribution (when exists)

is called stationary initial distribution. Whether it exists and is unique, depends on the
transition matrix P .

Example: Let |X | = 2 and let the transition matrix be
(

1− α α
β 1− β

)
.

Unique stationary initial distribution corresponding to that transition matrix is

(
β

α + β
,

α

α + β
).

Theorem 1.17 Let {Xn} be stationary time-homogenous Markov chain with transition
matrix (Pij) and (stationary) initial distribution π. Then

HX = H(X2|X1) = −
∑

i

π(i)
∑

j

Pij log Pij.

26

Proof. From (1.26), we obtain that for every n H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1).
Since chain is stationary, we get H(Xn|Xn−1) = H(X2|X1) and by Theorem 1.15,

HX = H ′
X = lim

n→∞
H(Xn|Xn−1, . . . , X1) = lim

n→∞
H(Xn|Xn−1) = H(X2|X1).

The equation
H(X2|X1) = −

∑
i

π(i)
∑

j

Pij log Pij

is Exercise 31.

1.9 Exercises

1. Let us toss until the firs head. Let X be the number tosses needed. Find H(X), if
the probability of head is p.

2. Prove grouping property

H(p1, p2, p3, . . .) = H(p1 + p2, p3, . . .) + (p1 + p2)H(
p1

(p1 + p2)
,

p2

(p1 + p2)
)

and deduce (1.2).

3. Let g : X → X a function. Prove that

H(g(X)) ≤ H(X), H(g(X)|Y) ≤ H(X|Y).

4. Find P such that H(P) = ∞.

5. let X1 and X2 random variables with disjoint supports. Let X have mixture distri-
bution, i.e.

X =

{
X1 if Z = 1,

X2 if Z = 0,

where Z ∼ B(1, p). Find H(X). Show that

2H(X) ≤ 2H(X1) + 2H(X2).

6. Let X ∼ P . Show that

P
(
P (X) ≤ d

)
(log

1

d
) ≤ H(X).

7. Find distributions P , Q and R show that

D(P‖Q) > D(P‖R) + D(R‖Q).

27

8. Prove (1.9).

9. Let
P = (p1, p2, . . . , pm, 0, 0, . . .)

and for every n,

Pn =
(
(1− 1

n
)p1, . . . , (1− 1

n
)pm,

1

nMn

, . . .
1

nMn︸ ︷︷ ︸
Mn

, 0, . . .), (1.27)

where
Mn = d2nce, c > 0.

show that

H(Pn) = (1− 1

n
)H(P) +

1

n
log2 Mn + h(

1

n
) → H(P) + c.

10. Let X infinite. Define

Pn = (1− α

log n
,

α

n log n
, . . . ,

α

n log n︸ ︷︷ ︸
n

, 0, · · ·),

where α > 0. Show that Pn → P , where P = (1, 0, . . .), but H(Pn) → α. Let

Q = (q1, q2, q3, . . .),

where qi = (1− q)qi−1. Show that D(P ||Q) < ∞, but

D(Pn||Q) →∞.

11. Let X = (X1, . . . , Xn) random vector, where Xi has Bernoulli distribution for every
i. The random variables Xi are neither independent nor identically distributed. Let
R = (R1, . . . , Rn) be the run lengths of X. For example, if X = (1, 0, 0, 0, 1, 1, 0),
then R = (1, 3, 2, 1). Show that

0 ≤ H(X)−H(R) ≤ min
i

H(Xi).

12. Let X, Y be random variables, let Z = X + Y .

• Show that H(Z|X) = H(Y |X).

• Show that when X and Y are independent, then H(X) ≤ H(Z) and H(Y) ≤
H(Z).

• Find X and Y such that H(X) > H(Z) and H(Y) > H(Z).

• When H(Z) = H(X) + H(Y)?

28

13. Let
ρ(X,Y) = H(X|Y) + H(Y |X).

Show that ρ is semi-metric. When ρ(X, Y) = 0?
Show that

ρ(X, Y) = H(X)+H(Y)−2I(X; Y) = H(X,Y)−I(X; Y) = 2H(X, Y)−H(X)−H(Y).

14. Prove that for every n ≥ 2

H(X1, . . . , Xn) ≥
n∑

i=1

H(Xi|Xj, j 6= i).

Show that
1

2
[H(X1, X2) + H(X3, X2) + H(X1, X3)] ≥ H(X1, X2, X3).

15. Let X, Y, Z be random variables, with Y and Z being independent. Show that

D(X||Y |Z) = −H(X|Z) + D(X||Y) + H(X) ≤ H(Z) + D(X||Y).

16. Using log-sum inequality prove (1.13).

17. (a) Let X1 and X2 have the same distribution. Let

ρ(X1, X2) := 1− H(X2|X1)

H(X1)
. (1.28)

Prove that ρ is symmetric, ρ ∈ [0, 1]. When ρ = 0? When ρ = 1?
(b) Let (X, Y) have the following joint distribution, where ε ∈ (0, 1

4
]:

Y \X −n −1 1 n
n 0 0 0 ε
1 0 1

4
− ε 1

4
0

-1 0 1
4

1
4
− ε 0

−n ε 0 0 0

Find I(X; Y) and ρ (like in (1.28)). Find cov(X,Y) and the correlation co-
efficient of X and Y . Note that when n → ∞, then the limit of correlation
coefficient is 1 for every ε > 0.

(c) Let (X, Y) have the following joint distribution

Y \X −n −1 1 n
n 0 0 1

4
0

1 1
4

0 0 0
-1 0 0 0 1

4

−n 0 1
4

0 0

Find I(X; Y) and ρ (like in (1.28)). Find cov(X,Y) and the correlation coef-
ficient of X and Y .

29

18. Prove

I(X; X|Z) = H(X|Z)

I(X; Y |Z) = H(Y |Z)−H(Y |X,Z)

I(X; Y |Z) = H(X|Z) + H(Y |Z)−H(X, Y |Z)

I(X; Y |Z) = H(X,Z) + H(Y, Z)−H(X,Y, Z)−H(Z).

19. Prove

H(X, Y |Z) ≥ H(X|Z)

I(X, Y ; Z) ≥ I(X; Z)

H(X,Y, Z)−H(X, Y) ≤ H(X, Z)−H(X)

I(X; Y |Z) ≥ I(Y ; Z|X)− I(Y ; Z) + I(X; Y).

When the inequalities are equalities?

20. find X, Y, Z such that

I(X; Y |Z) > I(X; Y) = 0

0 = I(X; Y |Z) < I(X; Y).

21. Prove that
H(X|g(Y)) ≥ H(X|Y).

find (X,Y) such that X and Y are depending, g is not one-to-one, but the inequality
is an equality.

22. Let X = (X1, . . . , Xn) be a random vector with binary (0 or 1 valued) components
having the following distribution:

P (x1, . . . , xn) =

{
2−(n−1) when

∑
i xi is even;

0, when
∑

i xi is odd.

Find the distribution of Xi. Find the distribution of (Xi, Xi+1). Find

I(X1; X2), I(X2; X3|X1), I(X4; X3|X1, X2), . . . , I(Xn; Xn−1|X1, X2, . . . , Xn−2).

23. Prove that if X → Y → Z, then H(X|Z) ≥ H(X|Y), I(X; Z) ≤ I(Y ; Z) and
I(X; Y |Z) ≤ I(X; Y).

24. Let {Pθ} be a set of Bernoulli distributions, θ ∈ Θ, where Θis discrete set, π is a
prior distribution of θ. Let X be a random sample and T (X) =

∑n
i=1 Xi. Find

H(θ|T (X)) and H(θ|X). Show that data processing inequality is an equality.

30

25. Let X1 → X2 → X3 → X4. Prove

I(X1; X4) ≤ I(X2; X3).

26. let X1 → X2 → · · · → Xn. Find I(X1; X2, X3, . . . , Xn).

27. Let X1 → X2 → X3 be Markov chain, where |X1| = n, |X2| = k, |X3| = m, k < n
and k < m. Show that "bottleneck" decreases mutual information between X1 and
X3 i.e. I(X1; X3) ≤ log k. Show that when k = 1, then X1 and X3 are independent.

28. Let |X | = m and let X be a random variable taking values on X . Find a non-
random estimate X̂ to X with smallest error probability. Let Pe = P(X 6= X̂). find
X such that Fano’s inequality is an equality

H(X) = Pe log(|X | − 1) + h(Pe)?

29. Let P be a probability distribution with support XP = {1, 2, . . .}. Let µ be the
mean of P . Prove that

H(P) ≤ µ log µ + (1− µ) log(µ− 1),

with equality iff P has geometric distribution. Hence, amongst such distributions,
the geometric distribution has the biggest entropy.

30. Let {Xn}∞n=1 be a stationary random process. Prove

H(X1, . . . , Xn)

n
≤ H(X1, . . . , Xn−1)

n− 1
H(X1, . . . , Xn)

n
≥ H(Xn|X1, . . . , Xn−1).

31. Prove that for stationary MC,

H(X2|X1) = −
∑

i

π(i)
∑

j

Pij log Pij.

32. Let X1, X2, . . . be i.i.d. random variables Xi ∼ P . Consider random walk {Sn}∞n=0,
s.t.

S0 = 0, S1 = X1, S2 = X1 + X2, . . . , Sn = X1 + · · ·+ Xn.

Prove that the entropy rate of random walk is HS = H(P).

33. A dog walks on the integers: at time 0 is it on position 0. Then it start to move,
with probability 0.5 to left and with the same probability to right. Then it continues
moving in the same direction, possibly reversing direction with probability 0.1. A
typical walk might look like

(X0, X1, . . .) = (0,−1,−2,−3,−4,−3,−2,−1, 0, 1, 2, 3, . . .).

Find HX .

31

34. Consider random walk on ring (0, 1, . . . , l), i.e. l is followed by 0. Let

Sn =
n∑

i=1

Xi,

where X1 has uniform distribution on (0, 1, . . . , l) and X2, X3, . . . are i.i.d. random
variables P (X2 = 1) = P (X2 = 2) = 0.5. Find HS.

32

2 Zero-error data compression

2.1 Codes

In this section, we suppose that besides our original alphabet X , we have another finite
coding alphabet D. In what follows, |D| =: D so that alphabet D will be referred to as
D-ary alphabet and without loss of generality we take

D = {0, . . . , D − 1}.
In case D = 2, thus, we speak about binary alphabet {0, 1} etc. The alphabet D is
used in data transmission. Typically D < |X |, hence to transmit a letter x it should be
represented as a finite string of letters from D - a codeword.

In what follows, let D∗ be the set of all finite length strings (codewords) from D. Formally,
thus

D∗ := ∪∞n=1Dn, X ∗ := ∪∞n=1X n.

Def 2.1 A code is mapping
C : X → D∗.

There are different codes. A classical example of a code is Morse alphabet, where D
consists of three elements: a dot, a dash and a letter space. Actually there is also a word
space but when coding letters only, it will not be needed. In Morse code, short letters
represent frequent letters (in English) and long sequences represent infrequent letters.
This makes Morse code reasonably efficient but, as we shall see, this is not the most
efficient (optimal) code. One can see this immediately by noticing that one of the three
code-letters – space – is used in the end of the word, only.

Def 2.2 A code C is non-singular , when it is injective i.e. every element of X is
mapped into a different codeword: if xi 6= xj then C(xi) 6= C(xj).

Non-singularity is sufficient to decode uniquely letters, but typically one need to code-
words. An then a stronger property is needed.

Def 2.3 An extension of a code C is a mapping C∗ from X ∗ into D∗ defined as follows

C∗ : X ∗ → D∗, C∗(x1 · · ·xn) := C(x1) · · ·C(xn).

Hence the extension of a code C is a concatenation of codewords of letters to obtain a
codeword for word.

Def 2.4 A code C is uniquely decodable , if its extension is non-singular.

Hence, if C is uniquely decodable, then to every codeword C(x1) · · ·C(xn) corresponds
only one original word (source string) x1 · · · xn. However, one may have to look at the
entire string to determine even the first symbol in the corresponding source string. It
is natural to expect that the first letter x1 can be decoded as soon as C(x1) has been
observed – decoding can be performed "on-line". This means that C(x1) cannot be the
beginning (prefix) of any other codeword.

33

Def 2.5 A code C is prefix code (prefix-free code, instantaneous code) if no code-
word is a prefix of any other codeword i.e. there are no different letters xi and xj such
that C(xi) is a prefix of C(xj).

Clearly prefix codes are uniquely decodable and uniquely decodable codes are non-singular.

Examples:

• Morse code is prefix code, since every codeword ends with space.

• Let X = {a, b, c, d} and consider binary codes C1, C2, C3 and C4, represented in the
table.

X C1 C2 C3 C4

a 0 0 10 0
b 0 010 00 10
c 1 01 11 110
d 0 10 110 111

Code C1 is not non-singular; C2 is non-singular but not uniquely decodable, since
010 could stand for the letter b as well as for the words ad and ca. Code C3 is
uniquely decodable but not prefix code. Indeed, to figure out whether 1100 . . . 0 is a
codeword of cbb . . . b or dbb . . . b, one has to count all 0’s. Thus, one cannot decode
the first letter before the whole codeword is read. This is so, because the codeword
C(c) = 11 is a prefix of the codeword C(d) = 110. Code C4 is prefix code, hence
every letter can be decoded as soon as it codeword has observed. Decode "on-line"
the word 01011111010.

2.2 Kraft inequality

Prefix code as a tree. Every prefix code can be represented as D-ary tree, where
every node has at most D children. To every branch of a tree correspond a letter from
D, to every leave corresponds a letter from X and the path from the root to the letter is
the codeword of that letter (leave). The length of that codeword is the length (or level)
of that leave.

Example: Let D = 3. Let us construct a code tree of the following prefix code:

a b c d e f g h
1 2 010 012 02 000 001 002

In what follows, given a code C, we shall denote by l(x) := |C(x)| the length of the
codeword. In the example above, |X | = 8 and the lengths of codewords in increasing
order are

l1 = l2 = 1, l3 = 2, l4 = l5 = l6 = l7 = l8 = 3.

It is clear that when C is a prefix code and can be represented as a tree, then the codeword
lengths cannot be arbitrary small. Kraft inequality gives a nice bound.

34

Theorem 2.6 (Kraft inequality) Let C : X → D∗ be a prefix code li = l(xi). Then
∑

i

D−li ≤ 1. (2.1)

Conversely, let {li}|X |i=1 integers that satisfy (2.1). Then there exist prefix code C : X → D∗

such that li = l(xi) ∀xi ∈ X .

Proof. Let us start with proving the first claim for the case |X | = m < ∞. Let l∗ :=
max{l1, . . . , lm} < ∞. Organize the set {l1, . . . , lm} (code) as a D-ary tree. A codeword
at level li has Dl∗−li descendants at level l∗. All the the descendant sets (corresponding
to different li) must be disjoint. Therefore the total number of nodes in these sets (over
all codewords) must be less than or equal to Dl∗ :

m∑
i=1

Dl∗−li ≤ Dl∗ ⇔
m∑

i=1

D−li ≤ 1.

Let us now prove the same claim for general case, where |X | ≤ ∞. Recall

D = {0, . . . , D − 1}
and consider the codeword d1d2 · · · dli . Let 0.d1d2 · · · dli be the real number having the
D-ary expansion 0.d1d2 · · · dli , i.e.

0.d1d2 · · · dli =

li∑
j=1

dj

Dj
. (2.2)

Consider the interval (sub-interval of [0, 1])

[0.d1d2 · · · dli , 0.d1d2 · · · dli + D−li).

corresponding to the codeword d1d2 · · · dli . To this interval belong all real numbers whose
D-ary expansion begins with 0.d1d2 · · · dli . Clearly the length of that interval is D−li .
Since C is prefix code the intervals corresponding to different codewords are disjoint.
Since they are all sub-intervals of [0, 1], their lengths sum up something less than or equal
to 1. This means that (2.1) holds.

Let us prove the second statement: we are given the set {li}|X |i=1 satisfying (2.1). We
aim to construct a prefix code so that the codewords have lengths {li}. Since (2.1) holds,
it is possible to divide unit interval into disjoint subintervals with lengths Dli . Indeed,
order l1 ≤ l2 ≤ · · · . Let the first interval be [0, D−l1), second [D−l1 , D−l1 + D−l2) and so
on.
Thus the first interval corresponds to l1. It begins with 0 that can be represented as

0. 0 · · · 0︸ ︷︷ ︸
l1

35

The first interval ends with D−l1 with D-ary expansion being

0. 0 · · · 01︸ ︷︷ ︸
l1

.

Clearly the first interval consists of these real numbers, whose D-ary expansion begins
with 0.0 · · · 0 (with l1 zeros).
Second interval corresponds to l2. We represent both D−l1 as well as D−l1 +D−l2 as D-ary
real numbers with l2 numbers after 0.. Recall that l2 ≥ l1. If l2 = l1, then the D−l1 will
be represented just like previously, otherwise it will be represented as

0.

l2︷ ︸︸ ︷
0 · · · 01︸ ︷︷ ︸

l1

0 · · · 0 . (2.3)

Clearly one needs at most l2 figures after 0. to expand D−l1 + D−l2 : To this interval
belong all these real numbers whose D-ary expansion begins with (2.3). The beginning of
the third interval (corresponding to l3) can be represented as D-ary number 0.d1d2 · · · dl3 .
Again, recall l3 ≥ l2 and if l3 > l2, then the last l3 − l2 elements of that representation
are zero. The D-ary expansion of the endpoint of that interval D−l1 + D−l2 + D−l3 has
obviously at most l3 elements after 0.. We proceed similarly: the interval corresponding
to li begins with D−l1 + · · · + D−li−1 . The D-ary expansion of that number has at most
li−1 elements after 0. and we use li elements which is possible because li ≥ li−1. Hence,
the D-ary representation is 0.d1 · · · dli . To this interval belong real numbers whose D-ary
expansion begins with that representation.
To construct the code, take to every li (to letter xi) the word d1 · · · dli from the D-ary
expansion of D−l1 + · · · + D−li−1 (beginning of the interval). Since different codewords
belong to different intervals, the obtained code is a prefix code.

Examples:

• Consider the code C4. Then l1 = 1, l2 = 2, l3 = l4 = 3. Let us find the real numbers
whose D-ary representations are 0.d1d2 · · · dli . We obtain

0.02 = 0, 0.102 = 0.12 = 0.5, 0.1102 = 0.112 =
1

2
+

1

4
= 0.75, 0.1112 =

1

2
+

1

4
+

1

8
= 0.875.

Hence the intervals used in the first part of the proof are

[0, 0 +
1

2
), [0.5, 0.5 + 0.25), [0.75, 0.75 + 0.125), [0.875, 0.875 + 0.125).

In this example, the Kraft inequality is an equality.

• The converse: Let {1, 2, 3, 3} be the lengths of the codewords. The easiest way to
construct the corresponding code is to construct a tree. The procedure used in the
proof is as follows. Let us construct the intervals:

[0,
1

2
), [

1

2
,
1

2
+

1

4
), [

1

2
+

1

4
,
1

2
+

1

4
+

1

8
), [

1

2
+

1

4
+

1

8
, 1).

36

With binary representation these intervals (recall the numbers of figures after 0.
must be li) are

[0.

1︷︸︸︷
0 , 0.1), [0.

2︷︸︸︷
10 , 0.11), [0.

3︷︸︸︷
110 , 0.111), [0.

3︷︸︸︷
111 , 1).

Codewords: 0, 10, 110, 111.

• Let the lengths of the codewords be {2, 2, 3, 3}. Note that Kraft inequality is strict:
2−2 + 2−2 + 2−3 + 2−3 = 3

4
< 1. Intervals

[0,
1

4
), [

1

4
,
1

2
), [

1

2
,
1

2
+

1

8
), [

1

2
+

1

8
,
1

2
+

1

8
+

1

8
).

With binary expansion these intervals are

[0.00, 0.01), [0.01, 0.10), [0.100, 0.101), [0.101, 0.110).

Codewords: 00, 01, 100, 101.

2.3 Expected length and entropy

Let us consider the case where letters are chosen randomly according to a distribution
P on X . In other words, we consider a random variable X ∼ P . Given a code C we
are interested in the expected length of a codeword. Since l(x) is the length of codeword
C(x), the expected length of the code C is

L(C) =
∑

x

l(x)P (x).

Example: Consider the code C4. Let P (a) = 1
2
, P (b) = 1

4
, P (c) = P (d) = 1

8
. Then

L(C4) =
1

2
+

1

4
· 2 +

1

8
· 3 +

1

8
· 3 =

7

4
.

Note that H(P) = 7
4
.

Hence L is the average number of symbols we need to describe the outcome of X when the
code C is used. Clearly, the smaller the expected length, the better code. The expected
length is obviously small when all codeword are small i.e. l(x) is small for every x. On
the other hand, we know that for prefix code the lengths l(x) cannot be arbitrary small,
since they have to satisfy Kraft inequality. But given the lengths l(x) that satisfy Kraft
equality, how to choose the code with minimal expected length? We know how to find
the codewords, but how to assign these words to letters x? The intuition correctly sug-
gest that the expected length is small if the frequent (high probability) letters have small
codewords and infrequent letters longer. Also the Morse code follows the same principle,
but the symbol "space" is only used to mark the end of the word, hence one can figure
out a three letter prefix code with smaller expected length.

37

The next theorem provides a fundamental lower bound on the expected length of any
prefix code. It turns out than the for D-ary code the expected length cannot be lower
then HD(P).

Theorem 2.7 Let C : X → D∗ be a prefix code. Then

L(C) ≥ HD(P),

with the equality if and only if l(x) = − logD P (x), ∀x ∈ X .

Proof.

L(C)−HD(P) =
∑

x

l(x)P (x)−
∑

x

P (x) logD

1

P (x)

= −
∑

x

P (x) logD D−l(x) +
∑

x

P (x) logD P (x).

Let

c :=
∑

x

D−l(x), R(x) :=
D−l(x)

c
.

Then

L(C)−HD(P) =
∑

x

P (x) logD

P (x)

R(x)
− logD c = D(P ||R) + logD

1

c
≥ 0,

because D(P ||R) ≥ 0 and from Kraft inequality, it follows logD
1
c
≥ 0.

The inequality is an equality only if P = R and c = 1. This holds iff for every x ∈ X it
holds P (x) = D−l(x). Necessary condition is that − logD P (x) is integer for every x ∈ X .

Optimal codes for D-adic distribution. The code with minimum expected length
is called optimal. From the preceding theorem, it follows that if P satisfies the following
condition:

logD

1

P (x)
∈ Z, ∀x ∈ X , (2.4)

(sometimes such distributions are called D-adic), then optimal prefix code is easy to
construct: take

l(x) = logD

1

P (x)
.

The lengths l(x) satisfy Kraft inequality (with equality) and the corresponding optimal
code can be constructed via constructing the tree or using the interval as in the proof
of Kraft inequality. The expected length of such code is HD(P) and from the preceding
theorem we know that it must be then optimal.

38

Example: A distribution satisfying (2.4) is

a b c d e f g h i
1
32

1
32

1
16

1
16

1
16

1
8

1
8

1
4

1
4

The lengths of codewords are {l(x)}x∈X = {5, 5, 4, 4, 4, 3, 3, 2, 2}. The optimal code can be
constructed by constructing a full binary tree at depth 5 and reduce or prune it according
to the word lengths (Exercise 1).
Second option is to use intervals as in the proof of Kraft equality. Then the intervals are

[0, 2−2), [2−2, 2−2 + 2−2), [2−1, 2−1 + 2−3), [2−1 + 2−3, 2−1 + 2−3 + 2−3),

[2−1 + 2−2, 2−1 + 2−2 + 2−4), [2−1 + 2−2 + 2−4, 2−1 + 2−2 + 2−3),

[2−1 + 2−2 + 2−3, 2−1 + 2−2 + 2−3 + 2−4), [2−1 + 2−2 + 2−3 + 2−4, 2−1 + 2−2 + 2−3 + 2−4 + 2−5)

[2−1 + 2−2 + 2−3 + 2−4 + 2−5, 1).

These intervals in binary expansion (2.2) are

[0.00, 0.01), [0.01, 0.10), [0.100, 0.101), [0.101, 0.110), [0.1100, 0.1101), [0.1101, 0.1110),

[0.1110, 0.1111), [0.11110, 0.11111), [0.11111, 1).

The code:
a b c d e f g h i

11111 11110 1110 1101 1100 101 100 01 00

Shannon-Fano code. Unfortunately not all distributions satisfy (2.4) and then the
above-described easy procedure cannot be applied. We can modify it as follows: replace
logD

1
P (x)

(not necessary an integer) with

l(x) = dlogD

1

P (x)
e. (2.5)

The lengths l(x) obtained by (2.5) clearly satisfy Kraft inequality, hence a prefix code
with (codeword) lengths l(x) exists. Such a code is called Shannon-Fano code. In
other words, a code C is Shannon-Fano code iff for every x ∈ X the relation (2.5) holds.

Clearly the rounding makes the code longer, hence in general (unless distribution is D-
aric) the expected length of Shannon-Fano code is larger than HD(P). This does not
necessarily imply that Shannon-Fano code is not optimal prefix code, but typically it is
the case. How much do we loose by rounding? Note

dlogD

1

P (x)
e < logD

1

P (x)
+ 1.

Therefore

L(C) =
∑

x

P (x)dlogD

1

P (x)
e <

∑
x

P (x) logD

1

P (x)
+ 1 = HD(P) + 1.

39

Corollary 2.1 For every distribution, there exist a prefix code C : X → D∗ such that

HD(P) ≤ L(C) < HD(P) + 1.

Example: Let P uniform over 5 letter: P (xi) = 1
5
, i = 1, . . . , 5. then

l(x) = log
1

P (x)
= log 5 ja dlog

1

P (x)
e = 3.

A Shannon-Fano code:

x1 x2 x3 x4 x5

000 001 010 011 110

The expected length of that code is 3. Hence

H(P) = log 5 < L(C) = 3 < log 10 = H(P) + 1.

It is possible to construct a prefix code with lengths {3, 3, 2, 2, 2} (how?). The expected
length of that code is 12

5
= 2.4, hence (for that P) Shannon-Fano code is not optimal.

Wrong distribution. In order to construct Shannon - Fano code, the distribution of
P has to be known. Suppose that by constructing the code, instead of true distribution
P , one uses wrong distribution Q. Clearly the obtained code might not be (close to)
optimal, on the other hand, if P ≈ Q, then one could expect also that the obtained codes
have similar length. The following theorem shows that for binary codes the increase of
the expected length is about D(P ||Q).

Theorem 2.8 Assume D = 2. Let P be the true distribution of letters and let

lQ(x) := dlog
1

Q(x)
e.

Then
H(P) + D(P‖Q) ≤

∑
x

lQ(x)P (x) < H(P) + D(P‖Q) + 1. (2.6)

Proof. The upper bound:
∑

x

lQ(x)P (x) =
∑

x

dlog
1

Q(x)
eP (x) <

∑
x

P (x)
(
log

1

Q(x)
+ 1

)

=
∑

x

P (x)
(
log

P (x)

Q(x)
+ log

1

P (x)
+ 1

)

= D(P‖Q) + H(P) + 1.

To find the lower bound is Exercise 2

Remark: The statement obviously hods for D > 2 provided entropy as well as K-L
distance are defined using logD instated of log2.

40

2.4 Huffman code

Shannon-Fano code is optimal (with shortest expected length), if P is D-adic i.e. satisfies
(2.4). We shall now describe a relatively simple procedure that gives optimal prefix code
for any distribution. The procedure is called Huffman procedure and resulting codes
Huffman codes . Recall that every prefix code is represented by a code tree, with each
leaf in the tree corresponding to a codeword. The Huffman procedure is to form a tree
such that the expected length is minimum.

NB! Assume |X | < ∞.

2.4.1 Huffman procedure

The easiest way to understand the procedure is by example.

Example: Let X = {a, b, c, d, e} and let P be

a b c d e
0.35 0.1 0.15 0.2 0.2

Huffman procedure for D = 2. Huffman procedure for binary tree is: find two letters
with smallest probability and merge them to form an internal node. In the example, thus,
join the letters b, c. Sum the corresponding probabilities 0.1 + 0.15 = 0.25 and consider
reduced alphabet {a, {b, c}, d, e} with probabilities 0.35, 0.25, 0.2, 0.2. Hence, we obtain
the so-called reduced distribution

a {b, c} d e
0.35 0.25 0.2 0.2

Now find two letters with smallest probability in reduced alphabet and merge them. In
this example, merge the letters d and e (sum the probabilities) and form another internal
node in the tree. After merging d and e, one ends up with the following reduced alphabet

a {b, c} {d, e}
0.35 0.25 0.4

Now, again find in the distribution above two letters with smallest probability and merge
them in the tree. We get once more reduced alphabet {a, b, c}, {d, e} and new distribution

{a, b, c} {d, e}
0.6 0.4

In this alphabet, there are only two letters which should be merged in the first level. A
code tree is then formed. Upon assigning 0 and 1 (in any convenient way) to each pair of
branches at an internal node, we obtain a codeword assigned to each x. For example the
obtained Huffman code C can be as follows.

41

A Huffman code:
a b c d e
00 010 011 10 11

The expected length is L(C) = 23
4

+ 31
4

= 9
4

= 2.25. Compare it with

H(P) = −0.35 log(0.35)− 0.1 log(0.1)− 0.15 log(0.15)− 0.4 log(0.4) = 2.202.

If in a step, there are more than one pairs to merge (with smallest probability) pick any
of them. All choices guarantee optimality.

Huffman procedure for D > 2. Huffman procedure for constructing D-ary code
(tree) is essentially the same: the smallest D probability masses are merged in each step.
If the resulting tree is formed in k + 1 steps, then there will be k + 1 internal nodes and
D + k(D − 1) leaves. Hence the alphabet contains D + k(D − 1) letters (for an integer
k), then the Huffman procedure can be applied directly. Otherwise, we need to add a few
dummy symbols with probability 0 to make the total number of symbols have the form
D + k(D − 1). Adding those dummy variables will not change the distribution, but they
ensure that in the last step of the procedure D letters can be merged.

Examples:

• Let P be as follows

a b c d e f
0.25 0.25 0.2 0.1 0.1 0.1

Let D = 3. since 6 6= 3 + k(3− 1), one dummy variable should be added.

a b c d e f ∗
0.25 0.25 0.2 0.1 0.1 0.1 0

Huffman procedure: in the first level e, f and ∗ will be merged; next {e, f, ∗}, d and
c will be merged; in the last step {c, d, e, f, ∗}, b and a will be merged.

A Huffman code:

a b c d e f
1 2 01 02 000 001

• Consider once again the first example. Let D = 4. Since |X | = 5, two dummy
variables should be added: 7 = (D−1)+D. With dummy variables, the distribution
is

a b c d e ∗ ∗
0.35 0.1 0.15 0.2 0.2 0 0

42

In the first step the letters d, e, ∗, ∗ will be merged. Then the rest.

A Huffman code:
a b c d e
0 30 31 2 1

Remark: Note that Huffman procedure can be applied for finite alphabet, only.

2.4.2 Huffman code is optimal

Let X = {x1, . . . , xm} and w.l.o.g. assume

P (x1) ≥ P (x2) ≥ · · · ≥ P (xm). (2.7)

since |X | < ∞, we know that there exists at least one optimal code. We shall now study
the properties of optimal codes. The first property states that every optimal code assigns
longer codewords to the less probably letters.

Proposition 2.1 Let C be an optimal code. Then l(xi) > l(xj) only if P (xi) ≤ P (xj).

Proof. Assume that there exist xi and xj such that P (xi) > P (xj) and l(xi) > l(xj).
Define a new code C∗ by changing the codewords C(xi) and C(xj). Since

L(C)− L(C∗) = P (xi)l(xi) + P (xj)l(xj)− (P (xi)l(xj) + P (xj)l(xi))

= (P (xi)− P (xj))(l(xi)− l(xj)) > 0,

we obtain that C cannot be optimal.

From Proposition 2.1 it follows that for every optimal code, there is an ordering X = {xi}
such that (2.7) holds and

l(x1) ≤ l(x2) ≤ · · · ≤ l(xm). (2.8)

Def 2.9 The codewords d′, d′′ ∈ D∗ are siblings , when they have the same length and
differ only in the last symbol.

Binary Huffman codes (D = 2). Let us, for simplicity, consider the binary codes and
proof the optimality of binary Huffman codes. In case of binary codes, every codeword
has only one sibling. At first, we show that there exists an optimal code C so that the
codewords associated to the words with smallest probabilities are siblings.

Proposition 2.2 There exists optimal code C so that C(xm−1) and C(xm) are siblings.

Proof. Let C be an optimal code such that equalities (2.7) and (2.8) both hold. This
means that C(xm) is the longest codeword. Since C(xm) is the longest, its sibling C(xm)
cannot be prefix of any other codeword. Also it is clear that the sibling of C(xm) has to
be a codeword – if not, we could reduce the length of C(xm) by one (replace C(xm) by its

43

parent) and that would contradict the optimality of C. Hence, there is a letter xj so that
C(xj) and C(xm) are siblings. If j = m− 1, then the statement holds. If j < m− 1, then
from (2.8) we obtain l(xj) = l(xm−1) = l(xm), hence we can change C(xj) and C(xm−1)
without loosing the optimality.

Theorem 2.10 Binary Huffman code is optimal.

Proof. By Proposition 2.2, there exists an optimal code C so that C(xm−1) and C(xm)
are siblings. Note that Huffman code has the same property. If we replace these codeword
by a common codeword at their parent, then we obtain a reduced code C ′ (reduced tree),
corresponding to the reduced distribution where xm and xm−1 are merged into one letter,
say y, having the probability pm + pm−1. The code C ′ is in average shorter than C, their
difference is

L(C)− L(C ′) = lpm + lpm−1 − (pm + pm−1)(l − 1) = pm + pm−1,

where l = l(xm) = l(xm−1). It is important to notice that the difference does not depend
on the structure of the tree (code) C. Hence C is optimal iff C ′ is optimal on reduced
alphabet and from any optimal code on reduced alphabet, we can easily obtain (by replac-
ing the node y by two descendants) optimal original code. In other words, after finding an
optimal tree (code) in reduced alphabet, we obtain an optimal tree in original alphabet
by attaching to y a subtree that is created with Huffman procedure
By Proposition 2.2, again, we know that there is an optimal code on the reduced alphabet
so that the codewords corresponding to the two smallest probabilities are siblings. Merg-
ing these letters, just like in Huffman procedure, we get more reduced alphabet. Just
like previously, we see that from any optimal tree on more reduced alphabet, we get an
optimal tree on original alphabet by growing it according to Huffmann procedure.
Proceeding with Huffman procedure, we eventually end up with reduced alphabet con-
sisting on two (merged) letters. Each of these two letters is a root of a subtree obtained
by Huffman procedure. Moreover, we know that with these subtrees an optimal tree on
two letters can be extended to an optimal tree for original alphabet. Obviously there is
only one optimal tree on two letter alphabet – joining these letters on first level – and,
therefore Huffman procedure produces an optimal tree.

The case D > 2. Let us briefly sketch the proof for the case D > 2. W.l.o.g. assume
that the size of the alphabet is D+k(D−1), where k is an integer (otherwise add dummy
letters). Recall that a D-ary tree with D + k(D − 1) leaves is called complete, if every
internal node has exactly D children. Complete tree satisfies Kraft inequality with equal-
ity. It is not hard to see that every optimal D-ary tree with D + k(D − 1) leaves has
to be complete. After seeing that, the proof of the optimality of Huffman D-ary tree is
almost the same as for binary tree. Indeed, Proposition 2.1 holds for every D. Therefore,
there is an optimal code C so that equalities (2.7) and (2.8) both hold. Hence C(xm)
has to be the longest codeword and since C corresponds to the complete tree, all siblings
of C(xm) must be codewords as well. The arguing just like in the proof of Proposition

44

2.2, we see that there exists an optimal code such that the codewords corresponding to
xm−D+1, xm−D+2, . . . , xm are siblings. Now the proof of Theorem 2.10 directly applies.

Remarks:

• Not all optimal codas are Huffman ones, i.e. there exist optimal codes that cannot
be constructed by Huffman procedure. For example, let X = {a, b, c, d, e, f} and let
P be uniform. Consider two binary codes C1 and C2 given as follows

letter \ code C1 C2

a 11 111
b 101 110
c 100 101
d 011 100
e 010 01
f 00 00

The code C2 is a Huffman code, but C1 cannot be constructed by Huffman procedure,
both are optimal (Exercise 6).

• The expected length of an optimal code is not always HD(P). Indeed, in the example
above

L = L(C1) = L(C2) =
8

3
> log 6 = H(P).

• We know that the expected length of optimal code L always satisfies inequalities

HD(P) ≤ L < HD(P) + 1,

Where the first inequality can be strict or equality. Can the second inequality be
improved, i.e. would it possible to replace the number 1 in the second inequality be
something smaller like 0.5? Let us see that this is not possible meaning that L can
be arbitrary close to HD(P) + 1. To see that consider the distribution (k is large
enough integer)

a b c d
1
k

1
k

1
k

1− 3
k

The lengths of Huffman binary codewords are l(a) = l(b) = 3 l(c) = 2 l(d) = 1
(provided k is large enough), hence L = 8

k
+ 1 − 3

k
→ 1, if k → ∞. On the other

hand
H(P) =

3

k
log k − (1− 3

k
) log(1− 3

k
) → 0, if k →∞.

Hence H(P) + 1− L → 0, if k →∞.
What is the Shannon-Fano code in this case?

45

• It is not true that the codeword lengths of Shannon-Fano code are always at least as
long as the ones of any optimal code. As an counterexample consider the distribution

a b c d
1
3

1
3

1
4

1
12

Huffman codeword lengths are (2, 2, 2, 2) or (1, 2, 3, 3). Hence, there exists an opti-
mal code so that l(c) = 3. By Shannon-Fano code, however, l(c) = 2.

2.4.3 Huffman procedure with infinite alphabet

When |X | = ∞, then Huffman procedure cannot be, in general, applied. However, under
some additional assumptions the code can be constructed "piecewise", from up to down.
For simplicity assume that D = 2.
Let the probabilities be arranged in decreasing order

p1 ≥ p2 ≥ · · · .

Suppose, there are infinitely many atoms pm, satisfying the following condition

pm ≥
∑
i>m

pi =: p∗m. (2.9)

Suppose, for a moment that alphabet is finite but very large. Let pm1 , pm2 , . . . satisfy (2.9).
Since pm1 satisfies (2.9), it is clear that applying Huffman procedure (since X is finite,
it is possible), all letters corresponding to pj, where j > m1, will be joined before pm1 .
Hence, at some point Huffman procedure reaches to the restricted distribution (alphabet)

p1, p2, . . . , pm1 , p
∗
m1

. (2.10)

Now it is clear that one can start with constructing first the optimal tree corresponding
to (2.10). After that the subtree starting from the node p∗m1

can be constructed. For that,
we consider the distribution (proportional to)

pm1+1, pm1+2, . . . , pm2 , p
∗
m2

. (2.11)

The numbers (2.11) are not probability distribution, since their sum is p∗m1
< 1. From

the point of view of Huffman procedure, the total sum is not important. Therefore, we
construct the Huffman tree for (2.11), the root of that subtree is p∗m1

. Now the tree (code)
with leaves (letters)

p1, p2, . . . , pm1 , pm1+1, pm1+2, . . . , pm2 , p
∗
m2

is constructed and the next step is to build the subtree starting from p∗m2
. For that, again,

we construct the Huffman tree for the atoms

pm2+1, pm2+2, . . . , pm3 , p
∗
m3

, (2.12)

46

so that the root of that tree is p∗m2
and now the tree corresponding to

p1, p2, . . . , pm3 , p
∗
m3

is constructed. Clearly such a piecewise procedure is independent of the number of letters
and – given that there are infinitely many atoms pm satisfying (2.9) – can also be applied
for the case of infinite alphabet.

Example: The condition (2.9) holds for any m when the distribution P is geometric
with parameter p ≥ 0.5. The proof of that is an easy exercise.

2.5 Uniquely decodable codes

Every prefix code is uniquely decodable but not vice versa. Hence the class of uniquely
decodable codes is larger than the one of prefix codes and it is reasonable to ask whether
the expected length of optimal uniquely decodable code can be shorter than the expected
length of the optimal prefix code. Here we proof that this is not the case, since Kraft
inequality also holds for uniquely decodable codes. From this follows that the expected
length of optimal uniquely decodable code is the same as that one of optimal prefix code.
Indeed (as we shall see) every uniquely decodable code must satisfy Kraft inequality. But
from Theorem 2.6 we know that for any set of integers {li} satisfying Kraft inequality
corresponds at least one prefix code with codeword lengths {li}. Hence, to any uniquely
decodable code corresponds a prefix code with exactly the same codeword lengths and,
hence, with the same expected length. So as far as the codeword lengths are concerned,
the uniquely decodable codes have no advantage over prefix codes.

Theorem 2.11 (McMillan) Let C be an uniqualy decodable code with codeword lengths
{l(x)}. Then Kraft inequality holds

∑
x

D−l(x) ≤ 1. (2.13)

Proof. At first, we consider special case |X | < ∞.
Let Ck be the k-extension of C, i.e.

Ck : X k → D∗, Ck(x1 · · · xk) = C(x1) · · ·C(xk).

(∑
x

D−l(x)
)k

=
∑
x1∈X

∑
x2∈X

· · ·
∑
xk∈X

D−l(x1)D−l(x2) · · ·D−l(xk)

=
∑

x1x2···xk∈Xk

D−l(x1)D−l(x2) · · ·D−l(xk)

=
∑

xk∈Xk

D−l(xk),

47

where xk := x1 · · · xk and

l(xk) := l(x1) + · · ·+ l(xk) = |Ck(xk)|.
Let a(m) be the number of source sequences xk mapping into codewords length m. For-
mally,

a(m) = |{xk ∈ X k : l(xk) = m}|.
Recall we consider now the case where X is finite. Let

lmax := max
x∈X

l(x).

Clearly
max
xk∈Xk

l(xk) = klmax.

Thus (∑
x

D−l(x)
)k

=
∑

xk∈Xk

D−l(xk) =
klmax∑

m=k

a(m)D−m.

Fix m and consider the set {xk ∈ X k : l(xk) = m}. There are at most Dm codewords with
length m. Since C is uniquely decodable, the extension Ck is non-singular. Therefore, to
every codeword (with length m) corresponds at most one original word. Hence, a(m) ≤
Dm. Therefore

(∑
x

D−l(x)
)k

=
klmax∑

m=k

a(m)D−m ≤
klmax∑
m=1

DmD−m = klmax

or ∑
x

D−l(x) ≤ (
klmax

) 1
k .

The left hand side is independent of k. Therefore
∑

x

D−l(x) ≤ lim
k→∞

(
klmax

) 1
k = 1.

Let now |X | = ∞. The proof above does not apply since lmax = ∞. Consider finite
sub-alphabet Xm = {x1, . . . , xm} ⊂ X . The restriction of an uniquely decodable code to
alphabet Xm remains uniquely decodable. Since Xm is finite, from the first part of the
proof we obtain ∑

x∈Xm

D−l(x) ≤ 1.

This holds for every m so that∑
x∈X

D−l(x) = lim
m→∞

∑
x∈Xm

D−l(x) ≤ 1.

Note that trivially holds the converse: if the integers {li} satisfy Kraft inequality, then
there exist a prefix code having with these codeword lengths. Every prefix code is uniquely
decodable, hence there is also an uniquely decodable code with given lengths.

48

2.6 Coding words

Let X1, . . . , Xk be random vector on alphabet X k. We shall denote the elements of X k

by xk := (x1, . . . , xk). This random vector could be interpreted as a random word with
length k. Let C be a code on alphabet X . Then its k-extension Ck is a code for words.
On the other hand, one can consider the set X k as an alphabet and then design a code

Ck : X k → D∗

with small expected length. Which approach – to design an good code for letters and
then extend it to alphabet or to design a good code directly for words – is preferable?
To answer that question, the measure of goodness should be specified. Clearly the code
for words has longer codewords and the expected length of Ck depends on k. Therefore,
for any code Ck, it is customary to measure the expected length per input letter. More
specifically, with l(xk) being the codeword lengths of Ck, we define

Lk :=
1

k
L(Ck) =

1

k

∑

xk∈Xk

P (xk)l(xk) =
1

k
El(X1, . . . , Xk).

Identically distributed letters. Consider the case where X1, . . . , Xk are identically
distributed (with distribution P) but not necessarily independent. Let C be a code for
alphabet X and consider the k-extension Ck. It is easy to see that L(Ck) = kL(C) so
that

Lk(C
k) = L(C). (2.14)

The proof of (2.14) is Exercise 15. Therefore, if C is optimal letter code for P , then

HD(P) ≤ Lk < HD(P) + 1,

and the right hand side cannot be improved.

Consider now the optimal code for words. From Corollary 2.1 we know that there exists
a code Ck so that

HD(X1, . . . , Xk) ≤ L(Ck) < HD(X1, . . . , Xk) + 1,

hence
HD(X1, . . . , Xk)

k
≤ Lk ≤ HD(X1, . . . , Xk)

k
+

1

k
. (2.15)

i.i.d. words. Suppose now that X1, . . . , Xk are i.i.d. with Xi ∼ P . Then HD(X1, . . . , Xk) =∑k
i=1 HD(Xi) = kHD(P) and from (2.15), we obtain

HD(P) ≤ Lk < HD(P) +
1

k
. (2.16)

The inequality (2.16) is sometimes referred to as Shannon first theorem (source coding
theorem). Hence, there exists a code Ck such that Lk(Ck) differs from HD(P) by at most

49

1
k
. Hence, choosing k large enough, we can find a code for k-letter words having Lk

arbitrary close to HD(P). This is not the case for extended code Ck, since there exists
distribution P so that for optimal letter code C, it holds that Lk(C

k) ≈ HD(P) + 1, ∀k.

Stationary process. Let X = X1, X2, . . . be a stationary process, Xi ∼ P . In informa-
tion theory, such a process is called stationary source and can be considered as a model
for the language. Let, for every k the code Ck : X k → D∗ be optimal. Recall that a
stationary process always has an entropy rate

HX = lim
k

HD(X1, . . . , Xk)

k
= lim

k
HD(Xk|X1, . . . , Xk−1) ≤ H(P).

For D > 2, the entropy rate is defined just like for D = 2. Since D is fixed, we leave it
out from the notation. From (2.15) it follows that

L∗ := lim
k

Lk = lim
k

HD(X1, . . . , Xk)

k
= HX .

Hence, the entropy rate of a stationary process is the average number of bits per symbol
required to code the process.

Let us now recapitulate. If X = X1, X2, . . . are i.i.d (a very special case of stationary
process), then HX = HD(P) so that L∗ = HD(P) and the only advantage of coding the
words over coding the letters (both optimally) is that for k large enough, we could get Lk

arbitrary close to HD(P).
However, if HX < HD(P) (recall that HX ≤ HD(P)), then the for k large enough, the
expected code length per input symbol Lk is (arbitrary) close to HX , hence smaller than
HD(P). Therefore, if HX is much smaller then HD(P), the advantage of coding words
instead of coding letters might be remarkable.

Example: Let X be a stationary MC with transition matrix Ik (k states). Then
H(P) = log k, but Lk = HX = 0.

2.6.1 Elias extension

To every uniquely decodable code corresponds a prefix code with the same codeword
lengths. If X is not very large, then constructing the tree (prefix code) with given code-
word lengths can be easy; in general the interval method used in the proof of Kraft
inequality can be used. In practice, however, it can be still complicated especially when
alphabet is very large. The alphabet, in turn, can be arbitrary large when one codes the
words X k instead of the letters, since X k increases with k.

We shall now consider an easy method of turning an uniquely decodable code into a
prefix code by adding a suitable prefix. This makes the codewords longer, but for long
codewords the length of prefix is very small in comparison with codeword lengths so that
when coding stationary source the limit L∗ remains unchanged.

50

Elias delta code.

Lemma 2.1 There exists a prefix code E : {1, 2, . . .} → D∗ such that

|E(n)| = logD n + o(logD n) (2.17)

Proof. Every number will be coded in three parts

E(n) = u(n)v(n)w(n),

where w(n) is D-adic representation of n. Therefore

|w(n)| = plogD(n + 1)q.

The second part v(n) is the D-adic representation of the length |w(n)| and the first part
u(n) consists of |v(n)| zeros. Therefore

|u(n)| = |v(n)| = plogD(1 + plogD(n + 1)q)q

and

|E(n)| = plogD(n + 1)q + 2plogD(1 + plogD(n + 1)q)q = logDn + o(logD n).

It is easy to see that E(n) is a prefix code. Assume, on contrary, that there exist integers
n and m such that E(m) is the prefix of E(n) i.e.

u(n)v(n)w(n) = u(m)v(m)w(m)w′.

In this case u(n) = u(m), because both consist of zeros and the first symbol of v(m) and
v(n) is not zero. That, in turn implies that v(n) = v(m), since they have to be at equal
length. But then it must be that w(m) = w(n) so that w′ is empty and n = m.

The described code is called Elias (delta) code .

Example. Let D = 2 and let us find E(12). Since 122 = 1100, we get w(12) = 1100.
Since |w(12)| = 4, we get v(12) = 100. Finally u(12) = 000. Thus

E(12) = u(12)v(12)w(12) = 0001001100.

Remark. If D = 2, then Elias delta code can be shortened by two bits. Indeed, since
for every n ≥ 0, |v(n)| ≥ 1, then instead of writing |v(n)| zeros in the beginning, one can
write |v(n)| − 1 zeros. Secondly, since every binary number begins with one, it can be
left out from the code. Thus w(n) is now the binary representation of with the leading
bit removed. However, v(n) is still the length oh the full binary representation of n. The
obtained code is now two bits shorter. Let that code be E∗. Thus

E∗(12) = 00100100.

51

Turning uniquely decodable codes into prefix codes. Let Ck : X k → D∗ be an
uniquely decodable code for words with codeword lengths l(xk). The Elias extension
C∗

k of Ck is defined as follows:

C∗
k(xk) = E(l(xk))Ck(xk).

This is now prefix code, since the prefix E(l(xk)) determines the length of the codeword.
By decoding, one first decodes E(l(xk)). Since E is a prefix code, one can decode it
immediately (on-line). After decoding E(l(xk)), one obtains the length of the following
codeword l(xk) and hence knows exactly when the word ends. Therefore, the whole word
can be decoded on-line.

Example: Let D = 2 and Ck(xk) = 001001100111. The length of that word is 12.
Since E(12) = 0001001100, we get

C∗
k(xk) = 0001001100001001100111.

In this example, the Elias prefix is almost as long as the codeword itself, but from (2.17)
we know that when the codewords lengths increase (for example k increases), then the
length of the prefix increases logarithmically and becomes negligible.

Combining codes. Another application of Elias extension is to combine several codes
into one. Suppose, for every k ≥ 1, we have a prefix code

Ck : X k → D∗.

With Elias prefix we can define a general prefix code

C : X ∗ → D∗, C(xk) = E(k)Ck(x
k).

Then the prefix determines the (index of) code and then the word is decoded.

2.7 Exercises

1. Consider the distribution

a b c d e f g h i
1
32

1
32

1
16

1
16

1
16

1
8

1
8

1
4

1
4

find the optimal code tree directly (Shannon-Fano code) and by Huffman procedure.

2. Find the lower bound in Theorem 2.8.

3. Let P
a b c d e f g h

0.25 0.05 0.1 0.13 0.2 0.12 0.08 0.07

Find optimal code for D = 2 and D = 3. Find their expected length.

52

4. Let the codeword lengths be 1, 1, 2, 2, 3, 3, 3.

a) Is there any binary code having such lengths? If yes, find it. Is it optimal for
some P?

b) Let D = 3. Is there any 3-code having such lengths? If yes, find it. Is it optimal
for some P?

c) Let D = 4. Is there any 4-code having such lengths? If yes, find it. Is it optimal
for some P?

5. Can C be a Huffman code if the codewords are

• {0, 10, 11}
• {00, 01, 10, 110}
• {10, 01, 00, }?

6. Let P be uniform over 6 letters. Prove that a code C with words 11, 101, 100, 011,
010, 00 is optimal but cannot be obtained by Huffman procedure.

7. A code is suffix code, if no codeword is suffix of any other codeword. Is a suffix code
uniquely decodable?

8. Let
l1 ≤ l2 ≤ · · · ≤ lm

be integers. For every 1 ≤ k ≤ m a binary codeword with length lk is chosen
randomly amongst all codewords with length lk. In such a way, a random code is
constructed. Let C be the set of prefix codes. Prove that

P(C ∈ C) =
m∏

k=1

(
1−

k−1∑
j=1

2−lj
)+

.

Prove that P(C ∈ C) > 0 iff the integers l1 ≤ l2 ≤ · · · ≤ lm satisfy Kraft inequality

9. Let LD(p1, . . . , pm) be the length of optimal code of (p1, . . . , pm). Prove that LD(p1, . . . , pm)
is a continuous function on Pm.

10. Prove that the equality LD(p1, . . . , pm) = HD(p1, . . . , pm) implies that

m = D + k(D − 1),

where k in a non-negative integer.

11. Let q < 2
3
. Let p ∈ [0, 1] such that

L2(1− q,
q

2
,
q

2
,) = H2(1− p,

p

2
,
p

2
).

Find the relation between p and q.

53

12. a) Find L2(0.5, 0.25, 0.1, 0.05, 0.05, 0.05) and L4(0.5, 0.25, 0.1, 0.05, 0.05, 0.05).

b) Consider binary code obtained from four-code (D = 4) in the following way:
Every letter of D = {α, β, γ, δ} are coded into binary codewords as follows:

α 7→ 00, β 7→ 01, γ 7→ 10, δ 7→ 11.

Let us call this process doubling. Find the optimal 4-code for (0.5, 0.25, 0.1, 0.05, 0.05, 0.05)
and the binary code obtained by doubling. What is the expected length of the
binary code obtained in such a way?

c) Let LT (P) be the expected length of the binary code obtained form Huffman
code (for P) by doubling (depends on chosen optimal 4-code). Prove

L2(P) ≤ LT ≤ L2(P) + 1.

d) Show that the inequalities can be equalities.

13. Let u1, u2, . . . , um non-negative integers. Find the solution of the following problem

min
l1,...,lm

m∑
i=1

uili

such that
m∑

i=1

D−li ≤ 1.

14. Let P be such that P (x1) > P (x2) ≥ P (x3) ≥ · · · ≥ P (xm). There exists a and b
such that

• if P (x1) > a, then for every binary Huffman code l(x1) = 1.;

• If P (x1) < b, then for every binary Huffman code l(x1) ≥ 2.

Find minimal a and maximal b.

15. Let X1, . . . , Xn be indentically distributed random variables. Let C a code on X ,
and let Ck be its k-extension. Prove L(Ck) = kL(C).

16. Let Y be a stationary MC on alphabet X with transition matrix

1
2

1
4

1
4

1
4

1
2

1
4

0 1
2

1
2

Find the entropy rate of the process. Let C1 C2 and C3 three binary codes on X .
Consider the following coding procedure: Code Y1 with C1. After observing Yn, pick
the code associated to that state (if Yn = 3, then C3) and code Yn+1 with that code.
Then pick the code associated to Yn+1 and code with that code Yn+2 and so on. Do
there exist codes C1, C2, C3 such that L∗ = HY ?

54

17. Let P
a b c

0.5 0.25 0.25

Let X1, X2, . . . be i.i.d. with distribution P . Let C be a binary code on {a, b, c}.
Consider the process

Z = Z1Z2Z3, . . . = C(X1)C(X2) . . .

Is Z always stationary?
Find the entropy rate of Z provided C is as follows:

(a)

C(x) =

0, if x = a;
10, if x = b;
11, if x = c.

(b)

C(x) =

00, if x = a;
10, if x = b;
01, if x = c.

(c)

C(x) =

00, if x = a;
1, if x = b;
01, if x = c.

18. Let P (x1) ≥ P (x2) ≥ P (x3) ≥ · · ·P (xm). Define

F (xi) :=
i−1∑

k=1

P (xk).

Let
l(xi) := p− log P (xi)q.

For every xi take C(xi) as the binary representation of F (xi) rounded off to l(xi)
bits. Prove that C is prefix code. This code is sometimes called as Shannon code.

55

3 Asymptotic equipartition property (AEP)

3.1 Weak typicality

Let X1, X2, . . . i.i.d. random variables on alphabet X , where Xi ∼ P .

NB! Assume throughout: H := H(P) < ∞.

Let X1, . . . , Xn be (the first) n random variables. Values on set X n. We shall denote
the elements of X n by xn. Thus

xn := (x1, . . . , xn).

Since X1, . . . , Xn are i.i.d., for every xn ∈ X n, it holds

P (xn) = P (x1, . . . , xn) = P (x1) · · ·P (xn).

We shall investigate the random variable P (X1, . . . , Xn) and we shall see that with high
probability

P (X1, . . . , Xn) ≈ 2nH ,

provided n is big enough. This means that most of the outcomes of X1, . . . , Xn have
almost the same probability when n is big – asymptotic equipartition property.

Def 3.1 Let ε > 0. Define the set W n
ε ⊂ X n as follows: xn ∈ X n belongs to the set W n(ε)

if and only if
2−n(H+ε) ≤ P (xn) ≤ 2−n(H−ε). (3.1)

The elements of Wn(ε) are called weakly ε-typical words .

Theorem 3.2 (Weak AEP) For every ε > 0 the following statements hold:

1 If xn ∈ W n
ε , then

2−n(H+ε) ≤ P (xn) ≤ 2−n(H−ε). (3.2)

2 There exists no(ε) so that for every n > no

P (W n
ε) > 1− ε. (3.3)

3 There exists n1(ε) so that for every n > n1

(1− ε)2n(H−ε) ≤ |W n
ε | ≤ 2n(H+ε). (3.4)

The proof is based on the weak law of large numbers (weak LLN). From that, it immedi-
ately follows (here P→ stands for the convergence in probability)

− 1

n
log P (X1, . . . , Xn) = − 1

n

n∑
i=1

log P (Xi)
P→ −E log P (X1) = H. (3.5)

56

Proof. 1 is the definition (3.1).

2 follows from (3.5). Indeed, from the convergence in probability, it follows that for
every ∀ε > 0 there exists no (depending on ε) so that

P
(∣∣− 1

n

n∑
i=1

log P (Xi)−H
∣∣ ≤ ε

)
≥ 1− ε, (3.6)

provided n > no.

3: Since the probability of a weakly ε-typical word is at least 2−n(H+ε), then

1 ≥ P (W n
ε) =

∑
xn∈W n

ε

P (xn) ≥ |W n
ε |2−n(H+ε),

so that
|W n

ε | ≤ 2n(H+ε).

Note that the obtained bound holds for any n. On the other hand, when n is big enough,
then P (W n

ε) > 1− ε. This bound together with the fact that the probability of a weakly
ε-typical word is at most 2−n(H−ε) gives us the estimate

1− ε ≤ P (W n
ε) =

∑
xn∈W n

ε

P (xn) ≤ |W n
ε |2−n(H−ε).

From this
|W n

ε | ≥ (1− ε)2n(H−ε).

Therefore, if n is big, the probability of W n
ε is almost one. This means that most likely

a realization of X1, . . . , Xn is a weakly ε-typical word. All weakly typical words have
roughly equal probability that usually (that depends on P) is smaller than the maximum
possible probability. On the other hand, the proportion of weakly typical words becomes
negligible as n grows. Indeed, let H < log |X | < ∞ (the distribution is not uniform).
Then the proportion of weakly typical words tends to zero, since (provided ε > 0 is not
too big).

|W n
ε |

|X |n ≤ 2n(H+ε)

2n log |X | = 2n(H+ε−log |X |) → 0.

Example: Let X1, . . . , Xn Bernoulli B(1, p). Then

P (xn) = pk(1− p)n−k, k =
n∑

i=1

xi.

Therefore
− 1

n
log P (xn) = −k

n
log p− n− k

n
log(1− p),

so that xn is weakly typical if the proportion of ones is almost p.

57

3.1.1 Weak AEP and coding

With weak AEP property it is easy to see that the vector X1, . . . , Xn is indeed possible
to code such that the expected length per letter Ln is arbitrary close to H provided n is
close enough. We shall consider binary codes, extension to D > 2 is obvious.

Indeed, let X be finite so that X1, . . . , Xn are i.i.d. random variables on finite alpha-
bet X . Let ε > 0 fixed and consider the set of weakly ε-typical words W n

ε . Let us order
the elements of W n

ε . Since |W n
ε | ≤ 2n(H+ε), then we can represent every index as a binary

word with length dn(H + ε)e ≤ n(H + ε) + 1. To every such binary word add prefix 0 to
show that the codeword corresponds to a weakly typical word. Hence,

l(xn) ≤ n(H + ε) + 2, ∀xn ∈ W n
ε .

For coding the rest of the words, order them and code their indexes similarly. Since the set
of words that are not weakly typical is smaller than 2n log |X |, it takes at most n log |X |+1
bits to code each of them. Hence, we can code every non-typical word as a binary word
with length n log |X |+1 (in fact, we can represent every word like that). For those words,
we add prefix 1 (showing that the binary index corresponds to a word that is not weakly
typical) and so we obtain the codewords for the set X \ W n

ε . The code is prefix code,
since the first bit shows the length of the following codeword. Obviously such a code is
not optimal, since most of the words (the ones that are not weakly typical) are coded
very roughly.
The expected length of obtained code:

L =
∑

xn∈Xn

l(xn)P (xn) =
∑

xn∈W n
ε

l(xn)P (xn) +
∑

xn 6∈W n
ε

l(xn)P (xn)

=
∑

xn∈W n
ε

(n(H + ε) + 2)P (xn) +
∑

xn 6∈W n
ε

(n log |X |+ 2)P (xn)

= P (W n
ε)(n(H + ε) + 2) + (1− P (W n

ε))(n log |X |+ 2).

Thus, when n is big enough, by 2 of Theorem 3.2, it holds P (W n
ε) ≤ ε so that

L ≤ n(H + ε) + ε(n log |X |) + 2 = n(H + ε′),

where ε′ = ε+ ε log |X |+ 2
n
and choosing ε small enough and n big enough, ε′ can be made

arbitrary small.

To recapitulate: For every ε > 0 and n big enough

H ≤ Ln(C) < H + ε, (3.7)

where C : X n → {0, 1}∗ is a prefix code based on weak-AEP property as described above.

58

3.1.2 High probability set

The coding procedure based on weak AEP property works well because for big n, there
exists a set W n

ε such that P (W n
ε) ≥ 1− ε, but the number of elements in W n

ε is relatively
small. However W n

ε is not the smallest (in terms of the number of elements) set having
probability at least 1 − ε. Let Bn

ε be the smallest set (in terms of number of elements)
having the probability 1 − ε. Then above-described coding scheme gives even smaller
length. Is the difference essential? From (3.7) it follows that the expected length per
letter cannot decrease much. Therefore, |W n

ε | cannot be much larger than |Bn
ε | and,

indeed, as the following lemma shows, also |Bn
ε | ≈ 2nH .

Lemma 3.1 For every 1 > ε > 0 and δ > 0, there exists n such that

|Bn
ε | ≥ 2n(H−δ). (3.8)

Proof. Take ε1 > 0 so small that ε1 < δ and ε1 + ε < 1. Let n be so big that (3.3) and
(3.4) hold for ε1, in addition let

ε1 − log(1− (ε + ε1))

n
< δ. (3.9)

Define
S := W n

ε1
∩Bn

ε .

By (3.3) and (3.4), it holds (P (Sc) ≤ P (W nc
ε1

) + P (Bnc
ε))

1− (ε1 + ε) ≤ P (S) =
∑
xn∈S

P (xn) ≤ |S|2−n(H−ε1) ≤ |Bn
ε |2−n(H−ε1).

Therefore

log |Bn
ε | ≥ log(1− (ε + ε1)) + n(H − ε1) = n

(log(1− (ε + ε1))

n
+ H − ε1

) ≥ n(H − δ).

Last inequality follows from (3.9).

3.1.3 Example

Let X1, . . . , X25 be i.i.d. with distribution B(1, 0.1). Hence |X n| = 225. In the table be-
low, all vectors xn are distributed into different classes according to the number of ones,
denoted via k. The vectors in every class are equiprobable. In the second column is the
number of elements in each class and in the third column the sum of P (xn) in every class
– the probability of class. In the last column are the numbers 1

n
log P (xn), where P (xn)

is the probability of every vector in a class (not the class probability).

59

k
(

n
k

) (
n
k

)
pk(1− p)n−k =

(
n
k

)
P (xn) − 1

n
log P (xn)

0 1 0.0717898 0.152003
1 25 0.199416 0.2788
2 300 0.265888 0.405597
3 2300 0.226497 0.532394
4 12650 0.138415 0.659191
5 53130 0.0645937 0.785988
6 177100 0.0239236 0.912785
7 480700 0.00721505 1.03958
8 1081575 0.00180376 1.16638
9 2042975 0.000378567 1.29318
10 3268760 0.0000673009 1.41997
11 4457400 0.0000101971 1.54677
12 5200300 1.32185×10−6 1.67357
13 5200300 1.46872×10−7 1.80036
14 4457400 1.39878×10−8 1.92716
15 3268760 ≈ 0 2.05396
16 2042975 ≈ 0 2.18076
17 1081575 ≈ 0 2.30755
18 480700 ≈ 0 2.43435
19 177100 ≈ 0 2.56115
20 53130 ≈ 0 2.68794
21 12650 ≈ 0 2.81474
22 2300 ≈ 0 2.94154
23 300 ≈ 0 3.06833
24 25 ≈ 0 3.19513
25 1 ≈ 0 3.32193

Take ε = 0.2. Since h(0.1) = 0.468996, we obtain that the set W 25
0.2 contains all elements

in classes k = 1, 2, 3, 4. Hence

P (W 25
0.2) = 0.199416 + 0.265888 + 0.226497 + 0.138415 = 0.830216 ≥ 1− ε.

On the other hand |W 25
0.2| = 25 + 300 + 2300 + 12650 = 15275, so that

1

25
log |W 25

0.2| ≈ 0.556 ∈ (0.468996− 0.2, 0.468996 + 0.2)

Therefore W 25
0.2 satisfies (3.3) and (3.4).

Let us find B25
n . Since the probabilities are in decreasing order, we collect them starting

from the one with biggest probability (consisting only on zeros), then the vectors with one
"1" and so on. The total sum of first four classes is 0.7635908, hence all them belong to
B25

n . Then we have to take some elements from the fifth class (k = 4). The probability of

60

an element from that class is 0.138415
12650

= 0.0000109419, hence from that class the following
number of elements has to be taken:⌈0.8− 0.7635908

0.0000109419

⌉
= 3328

Thus
|B25

0.2| = 1 + 25 + 300 + 2300 + 3325 = 5951

and
1

25
log |B25

0.2| ≈ 0.501.

The sets B25
0.2 and W 25

0.2 consists of pretty much similar vectors. However, B25
0.2 is smaller

since it contains only some elements from the fifth class, whilst W 25
0.2 contains the whole

class.

3.2 Weak joint typicality

Let P (x, y) be a probability distribution on X × Y , (X, Y) ∼ P . Consider i.i.d. random
vectors (X1, Y1), . . . , (Xn, Yn), where the pairs are distributed according to P . Then for
every pair (xn, yn) ∈ X n × Yn

P (xn, yn) =
n∏

i=1

P (xi, yi).

Def 3.3 The set W n
ε consist of pairs (xn, yn) ∈ X n × Yn satisfying the following condi-

tions:

• 2−n(H(X)+ε) ≤ P (xn) ≤ 2−n(H(X)−ε)

• 2−n(H(Y)+ε) ≤ P (yn) ≤ 2−n(H(Y)−ε)

• 2−n(H(X,Y)+ε) ≤ P (xn, yn) ≤ 2−n(H(X,Y)−ε).

The pairs in set W n
ε are called (weakly) jointly ε-typical .

Hence (xn, yn) is jointly typical if both xn and yn are weakly typical and the probability
of the pair (xn, yn) is approximatively 2−nH(X,Y).

We shall now prove the two-dimensional counterpart of Theorem 3.2. Let, as previ-
ously, P = P (x, y) be a joint distribution on X × Y , and let Px and Py be its marginal
distributions. Then product measure Px × Py is a probability measure on X × Y defined
as follows

Px × Py(x, y) = Px(x)Py(y).

Hence Px×Py has the same marginal distributions but the joint distribution corresponds
to the independence. Let us denote

Px × Py(x
n, yn) :=

n∏
i=1

Px × Py(xi, yi).

61

Theorem 3.4 For every ε > 0 the following statements hold:

1 If n is big enough, then
P (W n

ε) > 1− ε. (3.10)

2 If n is big enough, then

(1− ε)2n(H(X,Y)−ε) ≤ |W n
ε | ≤ 2n(H(X,Y)+ε). (3.11)

3 If n is big enough, then

(1− ε)2−n(I(X;Y)+3ε) ≤ Px × Py(W
n
ε) ≤ 2−n(I(X;Y)−3ε).

Proof. Proof follows that of Theorem 3.2.
1: From the weak law of large numbers

− 1

n
log P (X1, . . . , Xn) = − 1

n

n∑
i=1

log P (Xi)
P→ H(X)

− 1

n
log P (Y1, . . . , Yn) = − 1

n

n∑
i=1

log P (Yi)
P→ H(Y)

− 1

n
log P

(
(X1, Y1), . . . , (Xn, Yn)

)
= − 1

n

n∑
i=1

log P (Xi, Yi)
P→ H(X, Y).

Proving 1 is now Exercise 1.
2:

1 ≥ P (W n
ε) =

∑

(xn,yn)∈W n
ε

P (xn, yn) ≥ |W n
ε |2−n(H(X,Y)+ε),

1− ε ≤ P (W n
ε) ≤

∑

(xn,yn)∈W n
ε

P (xn, yn) ≤ |W n
ε |2−n(H(X,Y)−ε),

implying
(1− ε)2n(H(X,Y)−ε) ≤ |W n

ε | ≤ 2n(H(X,Y)+ε).

3: Applying 2, we get

Px × Py(W
n
ε) =

∑

(xn,yn)∈W n
ε

P (xn)P (yn)

≤
∑

(xn,yn)∈W n
ε

2−n(H(X)−ε)2−n(H(Y)−ε)

≤ 2n(H(X,Y)+ε)2−n(H(X)−ε)2−n(H(Y)−ε)

= 2−n(I(X;Y)−3ε)

Px × Py(W
n
ε) ≥ (1− ε)2n(H(X,Y)−ε)2−n(H(X)+ε)2−n(H(Y)+ε)

= (1− ε)2−n(I(X;Y)+3ε).

62

The interpretation of first two statements of Theorem 3.4 is the the same as in the case
of Theorem 3.2: the probability of jointly typical words (pairs) is nearly one, all jointly
typical pairs have almost equal probability and the number of those pairs is approxima-
tively 2nH(X,Y).
A necessary condition for a pair (xn, yn) to be jointly typical is that both words – xn

and yn – are weakly typical. The number of those pairs, where both words are weakly
typical is approximatively 2nH(X)2nH(Y), provided n is large enough. On the other hand,
in general

2nH(X,Y) < 2nH(X)2nH(Y)

so that amongst those pairs only a small fraction are jointly typical. To every weakly
typical word xn corresponds roughly

2n(H(X,Y)−H(X)) = 2nH(Y |X)

jointly typical words. Therefore, if a weakly typical xn in fixed, then choosing randomly
a weakly typical yn, the obtained pair turns out to be jointly typical with probability
roughly

2nH(Y |X)−nH(Y) = 2−nI(X;Y).

This is actually the third claim of Theorem 3.4: if a pair (xn, yn) is chosen randomly
(according to Px and Py) and the components are chosen independently from each other,
then it is jointly typical with probability close to 2−nI(X;Y). The bigger I(X,Y), the
smaller the probability and the less likely is to get a jointly typical set by choosing the
pairs independently. On the other hand, if I(X; Y) = 0 (the components are indepen-
dent), then almost any such randomly chosen pair is jointly typical.

Example: Let X = Y = {0, 1} and let

X\Y 1 0
1 7

80
1
80

0 9
80

63
80

Thus X ∼ B(1, 0.1), Y ∼ B(1, 0.2). Joint entropy

H(X, Y) = H(X) + H(Y |X) = h(
1

10
) + h(

7

8
).

The words xn = 100000000 and yn = 011000000 are both weakly typical with respect to
any ε so that

xn ∈ W 10
ε , yn ∈ W 10

ε .

Denote p = 1
10

, q = 1
8
and find

P (xn, yn) =
(1

80

)(9

80

)2(63

80

)7

= (pq)((1− p)q)2((1− p)(1− q))7 = q3(1− q)7(1− p)9p.

63

1

n
log P (xn, yn) =

3

10
log q +

7

10
log(1− q) +

9

10
log(1− p) +

1

10
log p

= q log q +
7

40
log q − 7

40
log(1− q) + (1− q) log(1− q) + (1− p) log(1− p) + p log p

= −h(q)− h(p) +
7

40
log(

q

1− q
).

therefore
− 1

n
log P (xn, yn)−H(X, Y) =

7

40
log(7)

implying
(xn, yn) 6∈ W 10

ε ,

when ε < 7
40

log(7).

3.3 Weak AEP processes

Weak AEP property (Theorems 3.2 and 3.4)is based on the following property of i.i.d.
random variables (i.i.d. process) X = {Xn}∞n=1:

− 1

n
log P (X1, . . . , Xn) → HX , p.k., (3.12)

where HX is the entropy of Xi and, therefore, the entropy rate of i.i.d. process. In the
case of i.i.d. process, the convergence (3.12) immediately follows from weak law of large
numbers. However, it turns out that (3.12) holds for a large class of stationary processes
rather than just i.i.d. process. And then, obviously, all claims of Theorem 3.2 hold
(check!).

Def 3.5 Stochastic process X1, X2 . . . has (weak) AEP property , if the convergence
(3.12), with HX being the entropy rate, holds.

All ergodic processes have weak AEP property. Like irreducible MC.

3.4 Exercises

1. Prove 1 of Theorem 3.4.

2. Let X1, X2, . . . i.i.d., Xi ∼ P . Let Q be another distribution on X . Consider the
likelihood ratio

Q(X1) · · ·Q(Xn)

P (X1) · · ·P (Xn)
.

Prove that there exists a set An
ε ⊂ X n and a constant A such that

1 if xn ∈ An
ε , then

2−n(A+ε) ≤ Q(xn)

P (xn)
≤ 2−n(A−ε);

64

2 if n is big enough, then
P (An

ε) > 1− ε;

3 if n is big enough, then

(1− ε)2n(A−ε) ≤ |An
ε | ≤ 2n(A+ε).

3. Let X1, X2, . . . be stationary MC with finite number of states (|X | < ∞) and tran-
sition matrix I (unit). Prove (3.12).

65

4 Communication through channel
In this section, we briefly consider the communication through discrete (say binary) chan-
nel. This goes as follows: the source (message) is encoded using a (say binary) code. The
the codewords are transmitted via a channel and the output is decoded. Such a commu-
nication system would be perfect, if the channel were noiseless. Unfortunately, this is not
the case and the output sequence of the channel can be random (noise is modeled random)
but has a distribution that depends on the input sequence. Then the decoded text can
differ from the original one and is nothing but an estimate of the original message.

4.1 Discrete channel

Let X be a finite input alphabet and Y a finite output alphabet. In a noisy memorless
channel, every input character x is transmitted into a output character y with fixed
probability P (y|x). The system consisting on X , Y and the transition matrix

(
P (y|x)

)
x∈X ,y∈Y (4.1)

is called discrete (memorless) channel .

Channel capacity. Let the channel be fixed and let P (x) be a distribution on input
alphabet X , considered as a input distribution. With matrix (4.1), we now obtain joint
distribution P (x, y) = P (x)P (y|x) on X × Y . Let (X, Y) ∼ P (x, y) be a random vector
with this joint distribution, i.e. X is a random input (with input distribution) and Y is
a random output.

Def 4.1 The capacity of channel (4.1) is

C = max
P (x)

I(X; Y),

where maximum is taken over all possible input distributions on X .

Remarks:

• It is not hard to see that when transition matrix is fixed, then the function P (x) →
I(X; Y) is a concave function. Since input alphabet is finite, it is a convex function
over closed convex set (simplex) in finite-dimensional space. Such a function is
always continuous, hence the maximum always exists. This justifies the use of
maximum instead of supremum in the definition of capacity.

• The capacity of channel can be interpreted as the maximum amount of information
which can be sent through the channel. Note that the following inequality holds

C ≤ log min{|X |, |Y|}.
Indeed:

C = max
P (x)

I(X; Y) ≤ max
P (x)

H(X) ≤ log |X |, C = max
P (x)

I(X; Y) ≤ max
P (x)

H(Y) ≤ log |Y|.

66

4.2 Examples of channels

Noiseless binary channel. Here X = Y = {0, 1} and the transition matrix P (y|x) is
unit matrix. By this channel every transmitted bit is received without error. Thus
by every transmission only one error-free bit can be transmitted and the capacity
of channel is also 1. Indeed, I(X; Y) = H(X; X) = H(X) so that

C = max
P (x)

H(X) = 1,

where the maximum is achieved by using B(1, 1
2
) as input distribution. Note that

by inequality C ≤ log min{|X |, |Y|}, 1 is the maximum possible channel capacity
for every channel with binary input alphabet.

Noisy channel with non-overlapping outputs. By this channel X = {0, 1}, Y =
{0, 1, 2, 3} and the transition matrix is

(
p 1− p 0 0
0 0 q 1− q

)

Although the channel has noise, every input can be determined from output so the
noise really does not matter. The capacity of this cannel, obviously, is also one bit
per transmission, i.e. C = 1. Formally,

C = max
P (x)

H(X)−H(X|Y) = max
P (x)

H(X) = 1,

because X = f(Y) and therefore H(X|Y) = 0. Thus the input distribution achiev-
ing the maximum is again uniform over two input letters.

Noisy keyboard (typewriter). Here X = Y is (English) alphabet so |X | = 26. By
noisy keyboard, every letter is transmitted correctly with probability 0.5, but with
the same probability an input letter is transmitted into next letter.
The capacity

C = max
P (x)

(
H(Y)−H(Y |X)

)
= max

P (x)
H(Y)− 1 = log 26− 1 = log 13,

where the maximum is achieved using uniform input alphabet. The obtained ca-
pacity matches with intuition – half of the letters (13) can be transmitted without
errors.

Binary symmetric channel. Here X = Y = {0, 1} and the transition matrix is
(

1− p p
p 1− p

)

67

The input symbol is transmitted correctly with probability 1−p, but with probability
p it is transmitted to another symbol. Thus an output 0 can correspond to input 0
or to input 1. Let, for any input X find the mutual information

I(X; Y) = H(Y)−H(Y |X) = H(Y)−
∑

x

P (x)H(Y |X = x)

= H(Y)−
∑

x

P (x)h(p) = H(Y)− h(p).

Hence I(X; Y) is maximum if Y has uniform distribution. This is achieved when X
has uniform distribution. Therefore,

C = max
P (x)

I(X; Y) = 1− h(p).

In case p = 0, the channel is noiseless and its capacity is 1. If p = 0.5, then X and
Y are independent. Then the channel allows no communication and its capacity is,
obviously, equal to 0.

J. Thomas and T. Cover: "This is the simplest model of a channel with errors;
yet it captures most of the complexity of the general problem".

Binary erasure channel. Here X = {0, 1} and Y = {0, 1, e}. The character e can
be interpreted as a sign that the input character is erased. Both input characters
are erased with the same probability and the receiver knows which bits have been
erased. Transition matrix

P (x|x) = 1− p, P (e|x) = p, x = 0, 1.

Let us find the capacity

C = max
P (x)

(
H(Y)−H(Y |X)

)
= max

P (x)
H(Y)− h(p).

To find maxP (x) H(Y), let us define E = {Y = e}. Since E = f(Y), then for any
input distribution P (x)

H(Y) = H(Y, E) = H(E) + H(Y |E) = h(p) + H(Y |E).

Let π = P(X = 1). Then P(Y = 1|Y 6= e) = π and P(Y = 0|Y 6= e) = (1− π) and

H(Y |E) = H(Y |Y 6= e)P(Y 6= e) = h(π)(1− p).

Therefore
C = max

P (x)
H(Y |E) = max

π
h(π)(1− p) = 1− p.

The capacity 1 − p matches with intuition: in average, a proportion p of all input
bits are erased and 1− p of them are transmitted correctly.

68

Symmetric channel. Channel is symmetric if all rows in transition matrix are permu-
tations of each others and all columns are permutations of each other. The following
channels are symmetric:

0.3 0.2 0.5
0.5 0.3 0.2
0.2 0.5 0.3

(
0.2 0.2 0.3 0.3
0.3 0.3 0.2 0.2

)
.

Capacity is easy to find. Let Hr be the entropy of a row. Then

I(X; Y) = H(Y)−H(Y |X) = H(Y)−Hr ≤ log |Y| −Hr,

where the equality holds if the output distribution is uniform. Let us see that
uniform output distribution holds for uniform input distribution. Indeed, if input
distribution is uniform, then

P (y) =
∑
x∈X

P (y|x)P (x) =
1

|X |
∑

x

P (y|x) =
c

|X | ,

where c is the sum of columns. Hence P (y) is independent of y and, therefore, the
output is uniform and

C = log |Y| −Hr.

The derivation above holds also when the rows of transition matrix are permutations
from each others and the sum of columns are constant (but columns might not be
permutations from each other). Such channels are called weakly symmetric. The
following channel is weakly symmetric but not symmetric:

(
1
3

1
6

1
2

1
3

1
2

1
6

)
.

J. Thomas and T. Cover: "In general, there are no closed form solution for the capacity.
but for many simple channels it is possible to calculate the capacity using properties like
symmetry."

4.3 The channel coding theorem

4.3.1 (M, n)-code

Let {1, 2, . . . , M} be the index set of a vocabulary. A random word W is drawn from the
index set. Using a fixed length block code

C : {1, 2, . . . , M} 7→ X n,

the message W is encoded, yielding a codeword Xn(W). The codeword is an n-elemental
random vector that is sent componentwise through the channel

{P (y|x)}x∈X ,y∈Y .

69

Since the channel is memoryless, the probability of receiving the output yn given input
xn is

P (yn|xn) =
n∏

i=1

P (yi|xi).

The output is then a random vector n that is decoded using a decoding function

g : Yn → {1, 2, . . . , M}

After decoding, we obtain the index estimate Ŵ = g(Y n) that is not necessarily the
original word W .

Def 4.2 Let {P (y|x)}x∈X ,y∈Y be a discrete memoryless channel. An (M,n) code for
the channel consists of the following:

• An index set {1, . . . , M}.
• An encoding function

C : {1, . . . ,M} → X n.

The set of codewords C(1), . . . , C(M) is called the codebook.

• A decoding function
g : Yn → {1, 2, . . . , M}.

Error probabilities. Let λi be the conditional probability of error of (M,n) code given
that the index i was sent. Thus

λi := P(Ŵ 6= i|W = i) = P
(
g(Y n) 6= i|W = i

)
=

∑

yn: g(yn) 6=i

P (yn|C(i)).

Let
λmax := max

i
λi

and let Pe be the error of mistake provided that the distribution of W us uniform on
{1, . . . , M}. Thus

Pe = P(Ŵ 6= W) =
∑

i

P(Ŵ 6= i|W = i)P(W = i) =
1

M

∑
i

P(Ŵ 6= i|W = i) =
1

M

∑
i

λi.

Obviously
Pe ≤ λmax.

70

Rate of (M, n) code.

Def 4.3 The rate of an (M,n) code is

R :=
log M

n
.

The rate of an (M, n) code measures the (maximal) proportion of information per single
transmission. Indeed, suppose W has uniform distribution. Then H(W) = log M so that
log M is the (maximal) amount of information contained in W . Every word (index) is
represented as n dimensional codeword. Thus, the amount of information per one trans-
mission is the rate of the code.
Formally the rate is only a property of (M,n) code and one aims to design the code so
that the rate were as big as possible. On the other hand, in order the communication to
be meaningful, the rate cannot be arbitrary small. Indeed, if |X | = 2, then the smallest
codeword length for fixed-length non-singular code C is dlog Me. Thus, for any meaningful
(M,n) code (with non-singular code C) the rate cannot be smaller than 1. Whether a code
is useful or not depends on the channel – one looks for a code such that the error probabil-
ity were as small as possible. And that cannot be achieved using codes with very high rate.

Example: Consider the case |X | = 2 and the code with codeword lengths dlog Me.
Let call this code uniform. When the channel is noiseless, then uniform code works just
fine and λmax = 0. However, using the code with binary symmetric channel the error
probability λmax increases with n:

1− λi = P(Ŵ = i|W = i) = P(Y n = C(i)) = (1− p)n.

Although the rate of the code is high, it is not useful. For that channel, the first obvious
solution seems to be so-called repetition code: every bit in uniform code is repeated m
times. The length of every codeword is then dlog Mem. If m is large enough and p < 0.5,
then by LLN, majority amongst m received bits should be the right one. Thus decoding
procedure is to decode any m-block as the majority of received bits (to avoid ties take
m odd). For every given ε > 0 one can find m long enough (depends on M) such that
λmax < ε. The rate of this code is about 1

m
.

Def 4.4 Let P (y|x) be a discrete memoryless channel. A rate R > 0 is said to be
achievable , if there exists a sequence of (p2nRq, n) codes such that λmax → 0 as n →∞.

Whether R is achievable or not depends on the channel. If R is achievable, then for every
ε > 0, there is a n and a (p2nRq, n) code such that λmax < ε. When λmax < ε, then for
any distribution of W , the probability of error is at most ε.

NB! In what follows, we shall denote p2nRq by 2nR.

71

4.3.2 Channel coding theorem

The following theorem, sometimes called Shannon second theorem is a central result of
information theory.

Theorem 4.5 (Channel coding theorem) Let C be the capacity of a channel. Then
every rate R satisfying R < C is achievable, i.e. for every R there exists a sequence of
(2nR, n) codes so that λmax → 0 as n grows.
Conversely, any sequence of (2nR, n) codes with λmax → 0 must have R ≤ C.

About the proof of the first claim. The proof is non-constructive: the code is con-
structed randomly. Then it is proved that in average the random code works well. Then
there must be ta least one non-random code that must work also well.

More precisely: let R < C. A random (2nR, n) code is generated as follows.

1. Fix input distribution P (x) that satisfies, I(X; Y) = C. This distribution as well
as channel {P (y|x)} are known to receiver (recall P (x) depends on channel, only).

2. Generate 2nR random n-dimensional vectors, each of them is i.i.d vector with com-
ponents distributed as P (x). Obtained words xn(1), . . . , xn(2nR) form (random)
codebook:

C : {1, . . . , 2nR} → X n, C(i) = xn(i).

This code is revealed to both sender and receiver.

3. A message W is chosen from {1, . . . , 2nR} according to a uniform distribution.

4. The chosen word w is encoded and the corresponding codeword xn(w) is sent over
the channel.

5. The receiver receives a (random) sequence Y n according to the distribution

P
(
yn|xn(w)

)
=

n∏
i

P
(
yi|xi(w)

)
.

6. Receiver decodes obtained word yn according to the rule:

g(yn) =

{
k if (xn(k), yn) ∈ W n

ε and for every i 6= k, (xn(i), yn) 6∈ W n
ε ,

∗ else.

Since ∗ 6∈ Y , the output ∗ is always a mistake. Here ε > 0 is so small that
C − R − 3ε > 0 and W n

ε is the set of jointly typical words. The receiver knows
P (x)P (y|x), hence he also knows the set W n

ε .

72

With the help of AEP (Theorem 3.4), it is possible to show that the average error made
by this procedure (over all possible codes) is smaller than 2ε, provided n is big enough.
Thus, for n big enough

∑
C

P (C)Pe(C) =
∑
C

P (C)
1

2nR

2nR∑
j

λj(C) ≤ 2ε,

where P (C) is the probability of obtaining a particular code C. Since the average prob-
ability of error is smaller than 2ε, there must be at least one deterministic code C∗ so
that

Pe(C∗) =
1

2nR

2nR∑
i

λi ≤ 2ε,

where λi := λi(C∗). From the inequality above, it follows that there exist at least 2nR−1

indexes i so that λi ≤ 4ε. Indeed, if not (i.e. the number of indexes i satisfying λi > 4ε

would be at least 2nR−1+1), then
∑2nR

i λi > 4ε(2nR−1+1) > 2ε2nR. Hence the best half of
the codewords have maximal probability of error less than 4ε. We keep these codewords,
only. With this (reduced) code it is possible to encode at least

2nR−1 = 2n(R− 1
n

)

words. Hence we have (2n(R− 1
n

), n) code such that λmax ≤ 4ε. The rate drops from R to
R− 1

n
, which is negligible for large n. Thus every rate R so that R < C is achievable.

Remarks:

• The intuition behind the proof: a random codeword xn is weakly typical with high
probability. Then the output yn is with high probability one of these vectors that
are jointly typical with xn. Given xn, there are in average about 2nH(Y |X) such
outputs. The decoding procedure works if the jointly typical outputs corresponding
to different codewords xn form disjoint classes with about 2nH(Y |X) elements in each
class. Since the number of weakly typical outputs is about 2nH(Y), it means that
the number if classes must be about

2nH(Y)

2nH(Y |X)
= 2nI(X;Y).

This is the upper limit to the number of codewords and, hence, to M .

• The proof does not provide a way of constructing the best codes. One can, obviously,
find the maximal probability of error for any particular code. But to find the best
(2nR, n) code, all possible |X |n2nR codes need to be checked and that is impossible.
It is also possible to generate the code random as suggested in the proof. Such a
code is likely to be good for long block lengths. The problem is decoding. Indeed,
without some structure in the code, the only possibility seems to be the table lookup.

73

But the table is as large as n× 2Rn, so that method is impractical. Hence, theorem
does not provide any practical coding scheme. However, it indicate when a good
scheme is possible.

In practice: turbo codes, parity check codes, error-correcting codes, Lempel-Ziv codes and
many more.

J. Thomas and T. Cover: "Ever since Shannon’s original paper on information theory,
researches have tried to develop structural codes that are easy to encode and decode.
So far, they have developed many codes with interesting and useful structures, but the
asymptotic rates of these codes are not yet near capacity."

4.3.3 The proof of second claim

Lemma 4.1 Let Xn = C(W) random codeword and let Y n = (Y1, . . . , Yn) be its output.
Then

I(Xn; Y n) ≤ nC,

where C is the channel capacity.

Proof. Chain rule

H(Y n|Xn) = H(Y1|Xn) + H(Y2|Y1, X
n) + · · ·+ H(Yn|Y1, . . . , Yn−1, X

n).

By definition

H(Yi|Y1, . . . , Yi−1, X
n) = −

∑

yi,yi−1,xn

log P (yi|y1, . . . , yi−1, x1, . . . , xn)P (y1, . . . , yi, x1, . . . , xn).

The channel is memoryless, i.e. for every i

P (yi|y1, . . . , yi−1, x1, . . . , xn) = P (yi|xi)

and
P (y1, . . . , yi, x1, . . . , xn) = P (yi|xi)P (y1, . . . , yi−1, x1, . . . , xn),

so that
H(Yi|Y1, . . . , Yi−1, X

n) = H(Yi|Xi).

Thus

H(Y n|Xn) =
n∑

i=1

H(Yi|Xi), (4.2)

implying that

I(Xn; Y n) = H(Y n)−H(Y n|Xn) = H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

(H(Yi)−H(Yi|Xi)) =
n∑

i=1

I(Xi; Yi) ≤ nC.

74

