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Abstract

Review of some topics in geometric function theory
connected with metrics in one way or other. The
underlying space is a subset of Euclidean space Rn,
but some considerations make sense e.g. in Hilbert
spaces, manifolds or even metric spaces.
Some of our metrics are generalizations of the
hyperbolic metric that have been studied in
connection with qc mappings.
We call these "hyperbolic type metric".
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1.Introduction

Based, in part, on 2013-2015 papers/preprints
VW1, VW2, KVZ, CHKV, HVW, HVZ, VZ
Why are metrics important? We can use metrics to
gain better understanding of maps and "distortion".
Various metrics such as chordal, Euclidean,
hyperbolic, quasihyperbolic metrics are recurrent in
geometric theory of functions.
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One of the main problems in the theory of K−qc
maps in Rn, n ≥ 2, is what happens when n = 2 and
K → 1. Naturally, one expects to get results which
are sharp or asymptotically sharp. For the K−qr/
K−qc versions of the Schwarz Lemma such results
are known, if we use hyperbolic metric ρBn /ρHn of
Bn/ Hn. Here our goal is to explore whether and to
what extent these results also hold for other
metrics.
Unlike the case n = 2, for n ≥ 3 one cannot expect
conformally invariant results. Therefore
"quasi-invariance" is desiderable.
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F.Klein’s Erlangen Program 1872 for geometry

Γ is the group of isometries
use isometries ("rigid motions") to study geometry
two configurations are considered equivalent if they
can be mapped onto each other by an element of Γ

the basic "models" of geometry are
(a) Euclidean geometry of Rn

(b) hyperbolic geometry of the unit ball Bn

in Rn

(c) spherical geometry (Riemann sphere)

The main examples of Γ are subgroups of Möbius
transformations of R

n
= Rn ∪ {∞}.
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Example: Rigid motions and invariant metrics

X Γ metric
G M(G) ρG hyperbolic metric,G = Bn,Hn

R
n

Iso(R
n

) q chordal metric
Rn transl. | · |Euclidean metric

Conformal invariance
Klein’s program had enormous influence not only on
geometry but also on function theory. Conformal
invariance became a paradigma or a leading idea of
geometric function theory.

Invariant versions of Schwarz lemma
Harmonic measure
Extremal length of curve family, Ahlfors-Beurling
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From Erlangen to Quasiworld

For the purpose of studying mappings defined in
subdomains of Rn, we must go beyond Erlangen, to the
quasiworld, in order to get a rich class of mappings.

Conformal → ”Quasiconformal”
Invariance → ”Quasi-invariance”

Unit ball → ”Classes of domains”
Smooth → "Nonsmooth"

Hyperbolic metric → Hyperbolic type metric"
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Outline and future scenario

Outline
Review various metrics such as hyperbolic metric,
visual angle metric,
Study how they behave under qc maps.

Scenario for further work
Geometry of balls of small radii: convexity,
smoothness of boundary, topological properties
(Klén, Rasila, Talponen)
Given two metrics, are Lipschitz (or uniformly
continuous) maps qc and vice versa?
Characterize those domains for which two given
metrics are equivalent. (Well-know special case:
uniform domains. )
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2. Preliminary results

For x ∈ Rn and r > 0 let

Bn(x, r) = { z ∈ Rn : |x− z| < r },
Sn−1(x, r) = { z ∈ Rn : |x− z| = r }

denote the ball and sphere, respectively, centered at x
with radius r. Also: Bn(r) = Bn(0, r), Sn−1(r) = Sn−1(0, r),
B2 = Bn(1), Sn−1 = Sn−1(1) .

For distinct points a,b,c,d ∈ Rn the absolute ratio is

|a,b,c,d| =
q(a,c)q(b,d)

q(a,b)q(c,d)

�

=
|a− c||b− d|

|a− b||c− d|

�

.

It is invariant under Möbius transformations.
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Weighted metric.

Let G ⊂ X be a domain and w : G→ (0,∞) continuous.
For fixed x,y ∈ G, define

dw(x,y) = inf{ℓw(γ) : γ ∈ Γxy, ℓ(γ) <∞}, ℓw(γ) =

∫

γ

w(γ(z))|dz|.

It is easy to see that dw defines a metric on G and
(G,dw) is a metric space.
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Corner stones of distortion theory

Sharp K-qc Schwarz lemma and linear dilatation bound

f : Bn→ f (Bn) ⊂ Bn, f (0) = 0 K-qc ⇒

|f (x)| ≤ 21−1/KK|x|α, α = K1/(1−n) .

f : Rn→ Rn, f (0) = 0 K-qc K ∈ [1,2] ⇒

fSn−1 ⊂ Bn(0,u) \ Bn(0,v)&
u

v
≤ exp(30

p

K − 1) .

Below we will give for n = 2 a refined version of the
Schwarz lemma.
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Qspheres map into annuli

Figure : Spheres map into annuli under K-qc, u/v→ 1,K → 1

This Euclidean distortion theory result has applications
to Hausdorff dimension of quasispheres (Mattila-V
1990, Prause 2007, Badger-Gill-Rohde-Toro, 2014)
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3. The hyperbolic metric

Four definitions of the hyperbolic metric ρBn
1 Weighted metric: ρBn = mw, w(x) = 2

1−|x|2 .

2 Explicite formula: sinh2 ρBn (x,y)
2 =

|x−y|2
(1−|x|2)(1−|y|2) .

3 Absolute ratio:
ρBn(x,y) = sup{log |a,x,y,d| : a,d ∈ ∂Bn} .

4 Endpoints of geodesics: ρBn(x,y) = log |x∗,x,y,y∗| .
Here x∗,y∗ are the points of intersection of the
circular arc perpendicular to ∂Bn, with ∂Bn.

All these four definitions are equivalent and have their
counterparts for Hn .
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Hyperbolic circles as Apollonian circles

Recall that x∗ = x/ |x|2.

Apollonian circles and hyperbolic metric

For x ∈ B2 \ {0}, the hyperbolic circle centered at x is an
Apollonian circle with the base points x,x∗.

Hyperbolic geodesic

Hyperbolic geodesics are arcs of circles, which are
orthogonal to the boundary of the domain. For any two
distinct points a,b ∈ B2 the hyperbolic geodesic
segment J[a,b] is unique.
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The constructions of midpoint z of the
hyperbolic segment J[x,y] in H2, G. Wang [VW1]

Case 2. Method I.

o w

x

y

z
H

2
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The constructions of midpoint z of the
hyperbolic segment J[x,y] in H2

Case 2. Method II.

o

x

y

v

z

H
2

x*y*
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The constructions of midpoint z of the
hyperbolic segment J[x,y] in H2

Case 2. Method IV.

oy1
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z

x

y

x1z1
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The constructions of midpoint z of the
hyperbolic segment J[x,y] in B2

Case 1.

m

m

x 0 z y

n

n

B
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The constructions of midpoint z of the
hyperbolic segment J[x,y] in B2

Case 2. Method II.

0

x

y

z

y
*

x
*

B
2

a

u =
y(1− |x|2) + x(1− |y|2)

1− |x|2|y|2
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Hyperbolic distances in H2 and B2

For points eiα, eiβ, 0 < α < β < π we see by the
definition of the absolute ratio that

|1,eiα,eiβ,−1|2 = |1,cosα,cosβ,−1|.

This can be understood as an identity between the
hyperbolic distances as follows

2ρH2(eiα,eiβ) = ρB2(cosα,cosβ)
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Points on ∂B2 and their projections on (−1,1)
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Figure : |1, eiα,eiβ,−1|2 = |1,cosα,cosβ,−1|.
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Möbius map of B2 onto S2
+

Connection between ρB2 and ρH3

The Möbius transformation

h(x) = −e3 +
2(x+ e3)

|x+ e3|2
, x ∈ B2,

maps B2 onto S2
+

in such a way that h(∂B2) = ∂B2 and
circular arcs of B2 perpendicular to ∂B2 are mapped
onto circular arcs of H3 perpendicular to ∂H3. Thus we
see that h provides a connection between hyperbolic
geometries of B2 and H3.
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Hyperbolic geometries of B2 and H2
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Question

Does the above picture have a counterpart when B2 is
replaced by a convex domain (say an ellipse or a
square) and the hyperbolic metric is replaced by the
quasihyperbolic metric?

Corollary

Joining the end points of an orthogonal arc with a chord
one can bisect hyperbolic distance.

2ρB2(0,c) = ρB2(0,c2).
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Figure : Orthogonal arc bisects the radial segment in
hyperbolic geometry
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4. Apollonian and Möbius invariant metric

In this section we discuss briefly two metrics, the
Apollonian metric αG and a Möbius invariant metric δG
introduced by P. Seittenranta. For the case of the unit
ball, both coincide with the hyperbolic metric. For other
domains they are quite different: while δG is always a
metric, for domains with ∂G subset of
(n− 1)-dimensional plane, αG may be a pseudometric.
The Apollonian metric was introduced in 1934 by D.
Barbilian, but forgotten for many years. A. Beardon
rediscovered it independently in 1998 and thereafter it
has been studied very intensively by many authors:
see, e.g., Z. Ibragimov, P. Hästö , S. Ponnusamy , S.
Sahoo . See also D. Herron, W. Ma and D. Minda.
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Apollonian metric of G ( Rn

αG(x,y) = sup{log |a,x,y,b| : a,b ∈ ∂G}.

αG agrees with ρG, if G equals Bn or Hn.
αhG(hx,hy) = αG(x,y) for h ∈ GM(Rn)
αG is a pseudometric if ∂G is ”degenerate”

 x
 y b

 a

Figure : Apollonian metric
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Seittenranta’s metric δG

For x,y ∈ G ( Rn, Seittenranta’s metric (PhD thesis
1997) is defined by

δG(x,y) = sup
a,b∈∂G

log{1 + |a,x,b,y|} .

Facts
1 The function δG is a metric.
2 δG agrees with ρG, if G equals Bn or Hn.
3 It follows from the definitions that δRn\{a} = jRn\{a}

for all a ∈ Rn.
4 αG ≤ δG ≤ log(eαG + 2) ≤ αG + 3. The first two

inequalities are best possible for δG in terms of αG
only.
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5. Quasihyperbolic metric

Let G be a proper subdomain of Rn . For all x, y ∈ G, the
quasihyperbolic metric kG is defined as

kG(x,y) = inf
γ

∫

γ

1

d(z, ∂G)
|dz|,

where the infimum is taken over all rectifiable arcs γ joining
x to y in G (Gehring-Palka 1976).

Distance ratio metric.

For a proper open subset G ⊂ Rn and for all x,y ∈ G, the
distance ratio metric jG is defined as

jG(x,y) = log

�

1 +
|x− y|

min{d(x, ∂G),d(y, ∂G)}

�

.

We also write d(x) = d(x, ∂G) .
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Uniform domains

We always have for all x,y ∈ G

kG(x,y) ≥ jG(x,y) .

The opposite inequality defines uniform domains.

Def.
A domain G in Rn is a uniform domain, if there exists
C ≥ 1 such that for all x,y ∈ G

kG(x,y) ≤ CjG(x,y) .

Idea: Generalized uniform domain. Given a pair of
metrics d1,d2 on a domain G we can ask under which
conditions there exists a constant C ≥ 1 such that for all
x,y ∈ G

1/C ≤ d1(x,y)/d2(x,y) ≤ C .
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Quasiconformal maps

Theorem, Gehring-Osgood, 1979

A qc homeomorphism f : G→ G′ = fG satisfies for all
x,y ∈ G

kG′(f (x), f (y)) ≤ C max{kG(x,y)1/C,kG(x,y)}

where C ≥ 1 is a constant.

Theorem, Väisälä, 1990’s
A homeomorphism f : D→ D′ = fD for which there exists
a constant C ≥ 1 such that for all subdomains G ⊂ D and
for all x,y ∈ G

kG′(f (x), f (y)) ≤ C max{kG(x,y)1/C,kG(x,y)}

holds, is quasiconformal.
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6. Modulus of curve family and metric

The curve family joining two sets E,F in G is denoted by
∆(E,F;G) and its modulus by M

�

∆(E,F;G)
�

. The
modulus is conformal invariant. A homeo f : G→ G′ is
K-qc if

M(Γ)/K ≤M(fΓ) ≤ KM(Γ), ∀Γ ⊂ G .

In this section we shall introduce two other conformal
invariants, the modulus metric μG(x,y) and its "dual"
quantity λG(x,y), where G is a domain in Rn and
x,y ∈ G. Both μG and λG(x,y) are functionally related to
the hyperbolic metric ρG if G = B2, while for a general
domain μG reflects the “capacitary geometry” of ∂G in a
delicate fashion.
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Conformal invariant λG Ferrand 1973
If G is a proper subdomain of Rn, then for x,y ∈ G with
x 6= y we define

λG(x,y) = inf
Cx,Cy

M
�

∆(Cx,Cy;G)
�

where Cz = γz[0,1) and γz : [0,1)→ G is a curve such
that γz(0) = z and γz(t)→ ∂G when t→ 1, z = x, y. It
follows from conformal invariance of the modulus that
λG is invariant under conformal mappings of G. That is,
λfG(f (x), f (y)) = λG(x,y), if f : G→ fG is conformal and
x,y ∈ G are distinct.
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Conformal invariant μG
If G is a proper subdomain of Rn, then for x,y ∈ G with
x 6= y we define

μG(x,y) = inf
Cx,y

M
�

∆(Cx,y, ∂G;G)
�

where Cx,y is a continuum joining x and y . It follows
from conformal invariance of the modulus that μG is
invariant under conformal mappings of G. That is,
μfG(f (x), f (y)) = μG(x,y), if f : G→ fG is conformal and
x,y ∈ G are distinct.
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Figure : The conformal invariants λG and μG .

λG(x,y) = inf
Cx,Cy

M
�

∆(Cx,Cy;G)
�

μG(x,y) = inf
Cx,y

M
�

∆(Cx,y, ∂G;G)
�
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Remark

J. Ferrand proved that λG(x,y)1/(1−n) is a metric thus
answering a question in [Vu1].
It is easy to see that μG(x,y) is either a metric or
identically 0.
λG(x,y)1/(1−n) , G = Rn \ {0} , reduces to
Teichmüller’s problem and μG(x,y) , G = Bn , to
Grötzsch’s problem.
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Ferrand’s problem

It follows from the definition of a qc map that such
maps are bilipschitz in both the λG

1/(1−n) and μG
metrics. Let f : G→ fG be a homeo.

Ferrand’s problem, 1973

Does λfG(f (x), f (y))1/(1−n) ≤ CλG(x,y)1/(1−n) for all
x,y ∈ G, imply that f is qc?

Answer by Ferrand-Martin-Vuorinen 1996: No. Yes, if we
require the same condition also for all subdomains.

Klén-Vuorinen-Zhang 2015

λG-isometries are qc. If G = Rn \ {0}, then λG-isometries
are Möbius.
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7. Triangular ratio metric [CHKV],[HVZ]

The triangular ratio metric is defined as follows for a
domain G ⊂ Rn and x,y ∈ G:

sG(x,y) = sup
z∈∂G

|x− y|

|x− z|+ |z − y|
∈ [0,1].

Theorem
For x,y ∈ Bn we have

tanh(
ρBn(x,y)

4
) ≤ sBn(x,y) ≤ tanh(

ρBn(x,y)

2
) .
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Corollary

If f : Hn→ Hn is a Möbius transformation onto Hn,
then for all x,y ∈ Hn,

sHn(f (x), f (y)) = sHn(x,y).

If f : Bn→ Bn is a Möbius transformation onto Bn,
then for all x,y ∈ Bn,

sBn(f (x), f (y)) ≤ 2sBn(x,y).
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Open problem

If f : Bn→ Bn is a Möbius transformation onto Bn, is it
true that for all x,y ∈ Bn,

sBn(f (x), f (y)) ≤ (1 + |f (0)|)sBn(x,y).
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8. Visual angle metric [KLVW], [VW1],[VW2],
[HVW]

Definition
For a domain G ( Rn, n ≥ 2, and x,y ∈ G the visual angle
metric is defined by

vG(x,y) = sup{Ý(x, z,y) : z ∈ ∂G} ∈ [0, π].

∂G is not a proper subset of a line.

This metric was introduced and studied in [KLVW], in
the PhD thesis of G. Wang.
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Figure : vG(x,y) = sup{Ý(x, z,y) : z ∈ ∂G}
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Theorem [Bhayo-V], [VW2]

If f : B2→ R2 is a K-qc map with fB2 ⊂ B2 and ρ is the
hyperbolic metric of B2, then

ρB2(f (x), f (y)) ≤ c(K) max{ρB2(x,y), ρB2(x,y)1/K}

for all x, y ∈ B2, where c(K) = 2arth(φK( th1
2)) and, in

particular, C(1) = 1.

Note that here 2 is best possible.
Agard and Gehring have studied also change of angles
under qc maps.
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Theorem, [VW2]

If f : B2→ R2 is a K-qc map with fB2 ⊂ B2, then

vB2(f (x), f (y)) ≤ C(K) max{vB2(x,y), vB2(x,y)1/K}

for all x, y ∈ B2, where C(K) = 2 · 41−1/K and C(1) = 2.

Agard and Gehring have studied also change of angles
under qc maps.
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9. Application of metrics

Teichmüller’s (1913- 1943) problem
Let G be a proper subdomain of Rn (n ≥ 2), and let

IdK(∂G) = {f : Rn→ Rn isK − quasiconformal :

f (x) = x,∀x ∈ Rn \G}.

Teichmüller, 1944
For x ∈ D, f ∈ IdK(∂D) , we have

logK(f ) ≥ hD(x, f (x))

where hD is the hyperbolic metric of D = R2 \ {0,1} .

Note. This result does not tell how to estimate hD(x, f (x)) .
Bonfert-Taylor, Canary, Taylor, Bridgeman Riemann surfaces
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Vuorinen-Zhang 2014

Convex domains
Let D ( Rn be a convex domain and
f ∈ IdK(∂D), K ∈ [1,Kn). Then, for all x ∈ D,

log

�

1 +
|x− f (x)|

min{d(x),d(f (x))}

�

= jD(x, f (x)) ≤ 4
p

K − 1 .

Additional results: [Manojlovic-V] 2011, [Bhayo-V] 2011,
[Li-V-X.Wang] (Banach spaces) 2014, Prause 2014,
n = 2.
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