Hyperbolic type metrics and quasiconformal maps

Matti Vuorinen

Department of Mathematics and Statistics University of Turku

Chinese-Finnish Seminar February 9, 2016 Aalto University

File: chifin20160209.tex, printed: 2016-2-6, 16.02

Abstract

- Review of some topics in geometric function theory connected with metrics in one way or other. The underlying space is a subset of Euclidean space \mathbb{R}^{n}, but some considerations make sense e.g. in Hilbert spaces, manifolds or even metric spaces.
- Some of our metrics are generalizations of the hyperbolic metric that have been studied in connection with qc mappings.
- We call these "hyperbolic type metric".

1.Introduction

- Based, in part, on 2013-2015 papers/preprints VW1, VW2, KVZ, CHKV, HVW, HVZ, VZ
- Why are metrics important? We can use metrics to gain better understanding of maps and "distortion". Various metrics such as chordal, Euclidean, hyperbolic, quasihyperbolic metrics are recurrent in geometric theory of functions.
- One of the main problems in the theory of $K-q c$ maps in $\mathbb{R}^{n}, n \geq 2$, is what happens when $n=2$ and $K \rightarrow 1$. Naturally, one expects to get results which are sharp or asymptotically sharp. For the K-qr/ $K-q c$ versions of the Schwarz Lemma such results are known, if we use hyperbolic metric $\rho_{\mathbb{B}^{n}} / \rho_{\mathbb{H}^{n}}$ of $\mathbb{B}^{n} / \mathbb{H}^{n}$. Here our goal is to explore whether and to what extent these results also hold for other metrics.
- Unlike the case $n=2$, for $n \geq 3$ one cannot expect conformally invariant results. Therefore "quasi-invariance" is desiderable.

F.Klein's Erlangen Program 1872 for geometry

- 「 is the group of isometries
- use isometries ("rigid motions") to study geometry
- two configurations are considered equivalent if they can be mapped onto each other by an element of Γ
- the basic "models" of geometry are
(a) Euclidean geometry of \mathbb{R}^{n}
(b) hyperbolic geometry of the unit ball B^{n} in \mathbb{R}^{n}
(c) spherical geometry (Riemann sphere)

The main examples of Γ are subgroups of Möbius transformations of $\overline{\mathbb{R}}^{n}=\mathbb{R}^{n} \cup\{\infty\}$.

Example: Rigid motions and invariant metrics

X	Γ	metric
G	$\mathcal{M}(G)$	ρ_{G} hyperbolic metric, $G=B^{n}, \mathbb{H}^{n}$
$\overline{\mathbb{R}}^{n}$	Iso $\left(\overline{\mathbb{R}}^{n}\right)$	q chordal metric
\mathbb{R}^{n}	transI.	$1 \cdot \mid$ Euclidean metric

Conformal invariance

Klein's program had enormous influence not only on geometry but also on function theory. Conformal invariance became a paradigma or a leading idea of geometric function theory.

- Invariant versions of Schwarz lemma
- Harmonic measure
- Extremal length of curve family, Ahlfors-Beurling

From Erlangen to Quasiworld

For the purpose of studying mappings defined in subdomains of \mathbb{R}^{n}, we must go beyond Erlangen, to the quasiworld, in order to get a rich class of mappings.

Conformal	\rightarrow
"Quasiconformal"	
Invariance	\rightarrow
"Quasi-invariance"	
Unit ball	\rightarrow
"Classes of domains"	
Smooth	\rightarrow
"Nonsmooth"	

Hyperbolic metric \rightarrow Hyperbolic type metric"

Outline and future scenario

Outline

- Review various metrics such as hyperbolic metric, visual angle metric,
- Study how they behave under qc maps.

Scenario for further work

- Geometry of balls of small radii: convexity, smoothness of boundary, topological properties (Klén, Rasila, Talponen)
- Given two metrics, are Lipschitz (or uniformly continuous) maps qc and vice versa?
- Characterize those domains for which two given metrics are equivalent. (Well-know special case: uniform domains.)

2. Preliminary results

For $x \in \mathbb{R}^{n}$ and $r>0$ let

$$
\begin{aligned}
B^{n}(x, r) & =\left\{z \in \mathbb{R}^{n}:|x-z|<r\right\} \\
S^{n-1}(x, r) & =\left\{z \in \mathbb{R}^{n}:|x-z|=r\right\}
\end{aligned}
$$

denote the ball and sphere, respectively, centered at x with radius r. Also: $B^{n}(r)=B^{n}(0, r), S^{n-1}(r)=S^{n-1}(0, r)$, $\mathbb{B}^{2}=B^{n}(1), S^{n-1}=S^{n-1}(1)$.

For distinct points $a, b, c, d \in \overline{\mathbb{R}^{n}}$ the absolute ratio is

$$
|a, b, c, d|=\frac{q(a, c) q(b, d)}{q(a, b) q(c, d)}\left(=\frac{|a-c||b-d|}{|a-b||c-d|}\right)
$$

It is invariant under Möbius transformations.

Weighted metric.

Let $G \subset X$ be a domain and $w: G \rightarrow(0, \infty)$ continuous.
For fixed $x, y \in G$, define
$d_{w}(x, y)=\inf \left\{\ell_{w}(\gamma): \gamma \in \Gamma_{x y}, \ell(\gamma)<\infty\right\}, \ell_{w}(\gamma)=\int_{\gamma} w(\gamma(z))|d z|$
It is easy to see that d_{w} defines a metric on G and $\left(G, d_{w}\right)$ is a metric space.

Corner stones of distortion theory

Sharp K-qc Schwarz lemma and linear dilatation bound

- $f: \mathbb{B}^{n} \rightarrow f\left(\mathbb{B}^{n}\right) \subset \mathbb{B}^{n}, f(0)=0 K-q c \Rightarrow$

$$
|f(x)| \leq 2^{1-1 / K} K|x|^{\alpha}, \alpha=K^{1 /(1-n)} .
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, f(0)=0 K$-qc $K \in[1,2] \Rightarrow$

$$
f S^{n-1} \subset B^{n}(0, u) \backslash B^{n}(0, v) \& \frac{u}{v} \leq \exp (30 \sqrt{K-1}) .
$$

Below we will give for $n=2$ a refined version of the Schwarz lemma.

Qspheres map into annuli

Figure: Spheres map into annuli under $K-q c, u / v \rightarrow 1, K \rightarrow 1$

This Euclidean distortion theory result has applications to Hausdorff dimension of quasispheres (Mattila-V 1990, Prause 2007, Badger-Gill-Rohde-Toro, 2014)

3. The hyperbolic metric

Four definitions of the hyperbolic metric $\rho_{B^{n}}$
(1) Weighted metric: $\rho_{B^{n}}=m_{w}, w(x)=\frac{2}{1-|x|^{2}}$.
(2) Explicite formula: $\sinh ^{2} \frac{\rho_{B} n(x, y)}{2}=\frac{|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}$.
(3) Absolute ratio:

$$
\rho_{B^{n}}(x, y)=\sup \left\{\log |a, x, y, d|: a, d \in \partial B^{n}\right\}
$$

(4) Endpoints of geodesics: $\rho_{B^{n}}(x, y)=\log \left|x_{*}, x, y, y_{*}\right|$. Here x_{*}, y_{*} are the points of intersection of the circular arc perpendicular to ∂B^{n}, with ∂B^{n}.

All these four definitions are equivalent and have their counterparts for \mathbb{H}^{n}.

Hyperbolic circles as Apollonian circles

Recall that $x^{*}=x /|x|^{2}$.

Apollonian circles and hyperbolic metric
For $x \in \mathbb{B}^{2} \backslash\{0\}$, the hyperbolic circle centered at x is an Apollonian circle with the base points x, x^{*}.

Hyperbolic geodesic

Hyperbolic geodesics are arcs of circles, which are orthogonal to the boundary of the domain. For any two distinct points $a, b \in \mathbb{B}^{2}$ the hyperbolic geodesic segment $J[a, b]$ is unique.

The constructions of midpoint z of the hyperbolic segment $J[x, y]$ in H^{2}, G. Wang [VW1]

Case 2. Method I.

The constructions of midpoint z of the hyperbolic segment $J[x, y]$ in H^{2}

Case 2. Method II.

The constructions of midpoint z of the hyperbolic segment $J[x, y]$ in H^{2}

Case 2. Method IV.

The constructions of midpoint z of the hyperbolic segment $J[x, y]$ in \mathbb{B}^{2}

Case 1.

The constructions of midpoint z of the hyperbolic segment $J[x, y]$ in \mathbb{B}^{2}

Case 2. Method II.

$$
u=\frac{y\left(1-|x|^{2}\right)+x\left(1-|y|^{2}\right)}{1-|x|^{2}|y|^{2}}
$$

Hyperbolic distances in \mathbb{H}^{2} and \mathbb{B}^{2}

For points $e^{i \alpha}$, $e^{i \beta}, 0<\alpha<\beta<\pi$ we see by the definition of the absolute ratio that

$$
\left|1, e^{i \alpha}, e^{i \beta},-1\right|^{2}=|1, \cos \alpha, \cos \beta,-1|
$$

This can be understood as an identity between the hyperbolic distances as follows

$$
2 \rho_{\mathbb{H}^{2}}\left(e^{i \alpha}, e^{i \beta}\right)=\rho_{\mathbb{B}^{2}}(\cos \alpha, \cos \beta)
$$

Points on $\partial \mathbb{B}^{2}$ and their projections on $(-1,1)$

Figure : $\left|1, \mathrm{e}^{i \alpha}, \mathrm{e}^{i \beta},-1\right|^{2}=|1, \cos \alpha, \cos \beta,-1|$.

Möbius map of \mathbb{B}^{2} onto S_{+}^{2}

Connection between $\rho_{\mathbb{B}^{2}}$ and $\rho_{\mathbb{H}^{3}}$
The Möbius transformation

$$
h(x)=-e_{3}+\frac{2\left(x+e_{3}\right)}{\left|x+e_{3}\right|^{2}}, \quad x \in \mathbb{B}^{2},
$$

maps \mathbb{B}^{2} onto S_{+}^{2} in such a way that $h\left(\partial \mathbb{B}^{2}\right)=\partial \mathbb{B}^{2}$ and circular arcs of \mathbb{B}^{2} perpendicular to $\partial \mathbb{B}^{2}$ are mapped onto circular arcs of \mathbb{H}^{3} perpendicular to $\partial \mathbb{H}^{3}$. Thus we see that h provides a connection between hyperbolic geometries of \mathbb{B}^{2} and \mathbb{H}^{3}.

Hyperbolic geometries of \mathbb{B}^{2} and \mathbb{H}^{2}

Question

Does the above picture have a counterpart when \mathbb{B}^{2} is replaced by a convex domain (say an ellipse or a square) and the hyperbolic metric is replaced by the quasihyperbolic metric?

Corollary

Joining the end points of an orthogonal arc with a chord one can bisect hyperbolic distance.

$$
2 \rho_{\mathbb{B}^{2}}(0, c)=\rho_{\mathbb{B}^{2}}\left(0, c_{2}\right) .
$$

Figure: Orthogonal arc bisects the radial segment in hyperbolic geometry

4. Apollonian and Möbius invariant metric

In this section we discuss briefly two metrics, the Apollonian metric α_{G} and a Möbius invariant metric δ_{G} introduced by P. Seittenranta. For the case of the unit ball, both coincide with the hyperbolic metric. For other domains they are quite different: while δ_{G} is always a metric, for domains with ∂G subset of
($n-1$)-dimensional plane, α_{G} may be a pseudometric.
The Apollonian metric was introduced in 1934 by D. Barbilian, but forgotten for many years. A. Beardon rediscovered it independently in 1998 and thereafter it has been studied very intensively by many authors: see, e.g., Z. Ibragimov, P. Hästö , S. Ponnusamy , S. Sahoo. See also D. Herron, W. Ma and D. Minda.

Apollonian metric of $G \subsetneq \mathbb{R}^{n}$

$$
\alpha_{G}(x, y)=\sup \{\log |a, x, y, b|: a, b \in \partial G\}
$$

- α_{G} agrees with ρ_{G}, if G equals B^{n} or H^{n}.
- $\alpha_{h G}(h x, h y)=\alpha_{G}(x, y)$ for $h \in \mathcal{G M}\left(\mathbb{R}^{n}\right)$
- α_{G} is a pseudometric if ∂G is "degenerate"

Seittenranta's metric δ_{G}

For $x, y \in G \subsetneq \mathbb{R}^{n}$, Seittenranta's metric (PhD thesis 1997) is defined by

$$
\delta_{G}(x, y)=\sup _{a, b \in \partial G} \log \{1+|a, x, b, y|\}
$$

Facts

(1) The function δ_{G} is a metric.
(2) δ_{G} agrees with ρ_{G}, if G equals B^{n} or H^{n}.
(3) It follows from the definitions that $\delta_{\mathbb{R}^{n} \backslash\{a\}}=j_{\mathbb{R}^{n} \backslash\{a\}}$ for all $a \in \mathbb{R}^{n}$.
(4) $\alpha_{G} \leq \delta_{G} \leq \log \left(e^{\alpha_{G}}+2\right) \leq \alpha_{G}+3$. The first two inequalities are best possible for δ_{G} in terms of α_{G} only.

5. Quasihyperbolic metric

Let G be a proper subdomain of \mathbb{R}^{n}. For all $x, y \in G$, the quasihyperbolic metric k_{G} is defined as

$$
k_{G}(x, y)=\inf _{\gamma} \int_{\gamma} \frac{1}{d(z, \partial G)}|d z|
$$

where the infimum is taken over all rectifiable arcs γ joining x to y in G (Gehring-Palka 1976).

Distance ratio metric.

For a proper open subset $G \subset \mathbb{R}^{n}$ and for all $x, y \in G$, the distance ratio metric j_{G} is defined as

$$
j_{G}(x, y)=\log \left(1+\frac{|x-y|}{\min \{d(x, \partial G), d(y, \partial G)\}}\right) .
$$

We also write $d(x)=d(x, \partial G)$.

Uniform domains

We always have for all $x, y \in G$

$$
k_{G}(x, y) \geq j_{G}(x, y)
$$

The opposite inequality defines uniform domains.
Def.
A domain G in \mathbb{R}^{n} is a uniform domain, if there exists
$C \geq 1$ such that for all $x, y \in G$

$$
k_{G}(x, y) \leq C j_{G}(x, y)
$$

Idea: Generalized uniform domain. Given a pair of metrics d_{1}, d_{2} on a domain G we can ask under which conditions there exists a constant $C \geq 1$ such that for all $x, y \in G$

$$
1 / C \leq d_{1}(x, y) / d_{2}(x, y) \leq C
$$

Quasiconformal maps

Theorem, Gehring-Osgood, 1979

A qc homeomorphism $f: G \rightarrow G^{\prime}=f G$ satisfies for all $x, y \in G$

$$
k_{G^{\prime}}(f(x), f(y)) \leq C \max \left\{k_{G}(x, y)^{1 / C}, k_{G}(x, y)\right\}
$$

where $C \geq 1$ is a constant.

Theorem, Väisälä, 1990's

A homeomorphism $f: D \rightarrow D^{\prime}=f D$ for which there exists a constant $C \geq 1$ such that for all subdomains $G \subset D$ and for all $x, y \in G$

$$
k_{G^{\prime}}(f(x), f(y)) \leq C \max \left\{k_{G}(x, y)^{1 / C}, k_{G}(x, y)\right\}
$$

holds, is quasiconformal.

6. Modulus of curve family and metric

The curve family joining two sets E, F in G is denoted by $\Delta(E, F ; G)$ and its modulus by $M(\Delta(E, F ; G))$. The modulus is conformal invariant. A homeo $f: G \rightarrow G^{\prime}$ is K-qc if

$$
M(\Gamma) / K \leq M(f\ulcorner) \leq K M(\ulcorner), \quad \forall\ulcorner\subset G .
$$

In this section we shall introduce two other conformal invariants, the modulus metric $\mu_{G}(x, y)$ and its "dual" quantity $\lambda_{G}(x, y)$, where G is a domain in \mathbb{R}^{n} and $x, y \in G$. Both μ_{G} and $\lambda_{G}(x, y)$ are functionally related to the hyperbolic metric ρ_{G} if $G=\mathbb{B}^{2}$, while for a general domain μ_{G} reflects the "capacitary geometry" of ∂G in a delicate fashion.

Conformal invariant λ_{G} Ferrand 1973

If G is a proper subdomain of \mathbb{R}^{n}, then for $x, y \in G$ with $x \neq y$ we define

$$
\lambda_{G}(x, y)=\inf _{C_{x}, C_{y}} M\left(\Delta\left(C_{x}, C_{y} ; G\right)\right)
$$

where $C_{z}=\gamma_{z}[0,1)$ and $\gamma_{z}:[0,1) \rightarrow G$ is a curve such that $\gamma_{z}(0)=z$ and $\gamma_{z}(t) \rightarrow \partial G$ when $t \rightarrow 1, z=x, y$. It follows from conformal invariance of the modulus that λ_{G} is invariant under conformal mappings of G. That is, $\lambda_{f G}(f(x), f(y))=\lambda_{G}(x, y)$, if $f: G \rightarrow f G$ is conformal and $x, y \in G$ are distinct.

Conformal invariant μ_{G}

If G is a proper subdomain of \mathbb{R}^{n}, then for $x, y \in G$ with $x \neq y$ we define

$$
\mu_{G}(x, y)=\inf _{C_{x, y}} M\left(\Delta\left(C_{x, y}, \partial G ; G\right)\right)
$$

where $C_{x, y}$ is a continuum joining x and y. It follows from conformal invariance of the modulus that μ_{G} is invariant under conformal mappings of G. That is, $\mu_{f G}(f(x), f(y))=\mu_{G}(x, y)$, if $f: G \rightarrow f G$ is conformal and $x, y \in G$ are distinct.

Figure : The conformal invariants λ_{G} and μ_{G}.

$$
\begin{aligned}
\lambda_{G}(x, y) & =\inf _{C_{x}, C_{y}} M\left(\Delta\left(C_{x}, C_{y} ; G\right)\right) \\
\mu_{G}(x, y) & =\inf _{C_{x, y}} M\left(\Delta\left(C_{x, y}, \partial G ; G\right)\right)
\end{aligned}
$$

Remark

- J. Ferrand proved that $\lambda_{G}(x, y)^{1 /(1-n)}$ is a metric thus answering a question in [Vu1].
- It is easy to see that $\mu_{G}(x, y)$ is either a metric or identically 0.
- $\lambda_{G}(x, y)^{1 /(1-n)}, G=\mathbb{R}^{n} \backslash\{0\}$, reduces to Teichmüller's problem and $\mu_{G}(x, y), G=\mathbb{B}^{n}$, to Grötzsch's problem.

Ferrand's problem

It follows from the definition of a qc map that such maps are bilipschitz in both the $\lambda_{G}{ }^{1 /(1-n)}$ and μ_{G} metrics. Let $f: G \rightarrow f G$ be a homeo.

Ferrand's problem, 1973

Does $\lambda_{f G}(f(x), f(y))^{1 /(1-n)} \leq C \lambda_{G}(x, y)^{1 /(1-n)}$ for all $x, y \in G$, imply that f is qc?

Answer by Ferrand-Martin-Vuorinen 1996: No. Yes, if we require the same condition also for all subdomains.

Klén-Vuorinen-Zhang 2015

λ_{G}-isometries are qc. If $G=\mathbb{R}^{n} \backslash\{0\}$, then λ_{G}-isometries are Möbius.

7. Triangular ratio metric [CHKV],[HVZ]

The triangular ratio metric is defined as follows for a domain $G \subset \mathbb{R}^{n}$ and $x, y \in G$:

$$
s_{G}(x, y)=\sup _{z \in \partial G} \frac{|x-y|}{|x-z|+|z-y|} \in[0,1]
$$

Theorem

For $x, y \in \mathbb{B}^{n}$ we have

$$
\tanh \left(\frac{\rho_{\mathbb{B}^{n}}(x, y)}{4}\right) \leq s_{\mathbb{B}^{n}}(x, y) \leq \tanh \left(\frac{\rho_{\mathbb{B}^{n}}(x, y)}{2}\right)
$$

Corollary

- If $f: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}$ is a Möbius transformation onto \mathbb{H}^{n}, then for all $x, y \in \mathbb{甘}^{n}$,

$$
S_{\mathbb{H}^{n}}(f(x), f(y))=S_{\mathbb{H}^{n}}(x, y) .
$$

- If $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ is a Möbius transformation onto \mathbb{B}^{n}, then for all $x, y \in \mathbb{B}^{n}$,

$$
s_{\mathbb{B}^{n}}(f(x), f(y)) \leq 2 s_{\mathbb{B}^{n}}(x, y) .
$$

Open problem

If $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ is a Möbius transformation onto \mathbb{B}^{n}, is it true that for all $x, y \in \mathbb{B}^{n}$,

$$
s_{\mathbb{B}^{n}}(f(x), f(y)) \leq(1+|f(0)|) s_{\mathbb{B}^{n}}(x, y) .
$$

8. Visual angle metric [KLVW], [VW1],[VW2], [HVW]

Definition

For a domain $G \subsetneq \mathbb{R}^{n}, n \geq 2$, and $x, y \in G$ the visual angle metric is defined by

$$
v_{G}(x, y)=\sup \{\nsucceq(x, z, y): z \in \partial G\} \in[0, \pi] .
$$

∂G is not a proper subset of a line.
This metric was introduced and studied in [KLVW], in the PhD thesis of G. Wang.

Figure : $v_{G}(x, y)=\sup \{\not \subset(x, z, y): z \in \partial G\}$

Theorem [Bhayo-V], [VW2]

If $f: \mathbb{B}^{2} \rightarrow \mathbb{R}^{2}$ is a K-qc map with $f \mathbb{B}^{2} \subset \mathbb{B}^{2}$ and ρ is the hyperbolic metric of \mathbb{B}^{2}, then

$$
\rho_{\mathbb{B}^{2}}(f(x), f(y)) \leq c(K) \max \left\{\rho_{\mathbb{B}^{2}}(x, y), \rho_{\mathbb{B}^{2}}(x, y)^{1 / K}\right\}
$$

for all $x, y \in \mathbb{B}^{2}$, where $c(K)=2 \operatorname{arth}\left(\varphi_{K}\left(\operatorname{th} \frac{1}{2}\right)\right)$ and, in particular, $C(1)=1$.

Note that here 2 is best possible. Agard and Gehring have studied also change of angles under qc maps.

Theorem, [VW2]

If $f: \mathbb{B}^{2} \rightarrow \mathbb{R}^{2}$ is a K-qc map with $f \mathbb{B}^{2} \subset \mathbb{B}^{2}$, then

$$
v_{\mathbb{B}^{2}}(f(x), f(y)) \leq C(K) \max \left\{v_{\mathbb{B}^{2}}(x, y), v_{\mathbb{B}^{2}}(x, y)^{1 / K}\right\}
$$

for all $x, y \in \mathbb{B}^{2}$, where $C(K)=2 \cdot 4^{1-1 / K}$ and $C(1)=2$.
Agard and Gehring have studied also change of angles under qc maps.

9. Application of metrics

Teichmüller's (1913-1943) problem

Let G be a proper subdomain of $\mathbb{R}^{n}(n \geq 2)$, and let

$$
\begin{gathered}
\operatorname{ld}_{K}(\partial G)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { is } K-\right.\text { quasiconformal : } \\
\left.f(x)=x, \forall x \in \mathbb{R}^{n} \backslash G\right\} .
\end{gathered}
$$

Teichmüller, 1944

For $x \in D, f \in I d_{K}(\partial D)$, we have

$$
\log K(f) \geq h_{D}(x, f(x))
$$

where h_{D} is the hyperbolic metric of $D=\mathbb{R}^{2} \backslash\{0,1\}$.
Note. This result does not tell how to estimate $h_{D}(x, f(x))$. Bonfert-Taylor, Canary, Taylor, Bridgeman Riemann surfaces

Vuorinen-Zhang 2014

Convex domains

Let $D \subsetneq \mathbb{R}^{n}$ be a convex domain and
$f \in \operatorname{ld}_{K}(\partial D), K \in\left[1, K_{n}\right)$. Then, for all $x \in D$,

$$
\log \left(1+\frac{|x-f(x)|}{\min \{d(x), d(f(x))\}}\right)=j_{D}(x, f(x)) \leq 4 \sqrt{K-1} .
$$

Additional results: [Manojlovic-V] 2011, [Bhayo-V] 2011, [Li-V-X.Wang] (Banach spaces) 2014, Prause 2014, $n=2$.

References

D. Barbilian, Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordanschen Bereiche. Second edition. Springer Undergraduate Mathematics Series. Casopsis Mathematiky a Fysiky 64, 1934-35, 182-183.
A. F. Beardon, The geometry of discrete groups. Graduate Texts in Math., Vol. 91, Springer-Verlag, New York, 1983.
A.F. Beardon, The Apollonian metric of a domain in \mathbb{R}^{n}. In: Peter Duren, Juha Heinonen, Brad Osgood and Bruce Palka (Eds.) Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), pp. 91-108. Springer-Verlag, New York, 1998.

围 J．Chen，P．Hariri，R．Klén，and M．Vuorinen：Lipschitz conditions，triangular ratio metric，and quasiconformal maps．Ann．Acad．Sci．Fenn．2015，to appear，arXiv：1403．6582［math．CA］31pp．
－M．M．Deza and E．Deza：Encyclopedia of distances． Third edition．Springer，Heidelberg，2014．xx＋733 pp．ISBN：978－3－662－44341－5；978－3－662－44342－2
囯 J．Lelong－Ferrand：Invariants conformes globaux sur les variétés riemanniennes．（French）J．Differential Geometry 8 （1973），487－510．

囯 J．Ferrand，G．Martin，and M．Vuorinen：Lipschitz conditions in conformally invariant metrics．J．Anal． Math． 56 （1991），187－210．

圊 A．H．Frink，Distance functions and the metrization problem，Bull．Amer．Math．Soc． 43 （1937），133－． 142.

圊 F．W．Gehring and B．P．Palka：Quasiconformally homogeneous domains．J．Analyse Math． 30 （1976）， 172－199．

固 F．W．Gehring and B．G．Osgood：Uniform domains and the quasihyperbolic metric．J．Analyse Math． 36 （1979），50－74（1980）．

囯 P．Hariri，M．Vuorinen and G．Wang：Some remarks on the visual angle metric．arXiv：1410．5943， Manuscript， 12 pp．

嗇 P．Hästö：A new weighted metric，the relative metric I．J．Math．Anal．Appl． 274 （2002），38－58．

圕 P．Hästö，Z．Ibragimov，D．Minda，S．Ponnusamy and S．K．Sahoo：Isometries of some hyperbolic－type path metrics，and the hyperbolic medial axis．In the tradition of Ahlfors－Bers，IV，Contemp．Math．，432， Amer．Math．Soc．（2007），63－74．

围 P．Hästö，The Apollonian metric：uniformity and quasiconvexity，Ann．Acad．Sci．Fenn．Math． 28 （2003），385－414．
比 P．Hästö，The Apollonian inner metric，Comm．Anal． Geom． 12 （2004），no．4，927－947．

R P．Hästö，Isometries of relative metrics，Proc．Int． Workshop on Quasiconformal Mappings and their Applications，57－77，New Delhi，India， 2007.

圊 P．Hästö and Z．Ibragimov，Apollonian isometries of planar domains are Möbius mappings，J．Geom． Anal． 15 （2005），no．2，229－237．

軎 P．Hästö，S．Ponnusamy，and S．K．Sahoo， Inequalities and geometry of the Apollonian and related metrics，Rev．Roumaine Math．Pures Appl． 51（4）（2006），433－452．
圊 Z．Ibragimov：The Cassinian metric of a domain in \mathbb{R}^{n} ．Uzbek Math．Journal， 1 （2009），53－67．

囯 Z．Ibragimov，M．R．Mohapatra，S．K．Sahoo，X． Zhang：Geometry of the Cassinian metric and its inner metric．arXiv：1412．4035［math．MG］11pp．
: R. Klén, H. Lindén, M. Vuorinen, and G. Wang, The visual angle metric and Möbius transformations.Comput. Methods Funct. Theory. October 2014, Volume 14, Issue 2-3, pp 577-608, DOI 10.1007/s40315-014-0075-x.

固 R. Klén, M. Vuorinen and X. Zhang: On isometries of conformally invariant metric.- J. Geom. Anal., 2015, 1-10, DOI 10.1007/s12220-015-9577-7, arXiv:1411.4381 math.CV.
圊 O. Martio and J. Väisälä: Quasihyperbolic geodesics in convex domains II. Pure Appl. Math. Q. 7 (2011), no. 2, Special Issue: In honor of Frederick W. Gehring, Part 2, 395-409.

圕 P．Seittenranta，Möbius－invariant metrics，Math． Proc．Cambridge Philos．Soc． 125 （1999），511－533．

固 J．Väisälä，The free quasiworld．Freely quasiconformal and related maps in Banach spaces． In Quasiconformal geometry and dynamics（Lublin， 1996），Banach Center Publ．48，Polish Acad．Sci．， Warsaw，1999，pp．55－118．

圕 M．Vuorinen：Conformal geometry and quasiregular mappings．Lecture notes in math．1319， Springer－Verlag，Berlin， 1988.

图 M．Vuorinen and G．Wang：Bisection of geodesic segments in hyperbolic geometry．－Proceedings of an international conference，Complex Analysis and Dynamical Systems V，Contemp．Math． 591 （2013）， 273－290，arxiv： 1108.2948 math．MG，
居 M Vıصrinen and G Manc：The visual angle metric

E- M. Vuorinen and G. Wang: The visual angle metric and quasiregular maps,arXiv:1505.00607, 14pp .

Thank you!

