Some remarks on the Cassinian metric

Parisa Hariri
parisa.hariri@utu.fi
University of Turku

CHIFIN2016
February 9, 2016, Aalto University

Contents of the talk

- Definitions
- Inequalities between the Cassinian and other metrics
- A formula for $s_{\mathbb{B}^{2}}$

This talk is based on joint paper, with

- R. Klén, M. Vuorinen, X. Zhang.

Motivation

We are interested in metrics (in subdomains of \mathbb{R}^{n}), which behave like the hyperbolic metric in the case $n=2$.
We

- study "Cassinian metric" which was introduced by Z. Ibragimov in [I].
- compare it with different hyperbolic type metrics
- study particular case of triangular ratio metric in the unit disc.

Definitions I

Let G be a proper subdomain of $\mathbb{R}^{n}, n \geq 2$.
The triangular ratio metric in G for $x, y \in G$ is defined by

$$
s_{G}(x, y)=\sup _{z \in \partial G} \frac{|x-y|}{|x-z|+|z-y|} \in[0,1]
$$

Definitions II

Let G be a proper subdomain of $\mathbb{R}^{n}, n \geq 2$. The Cassinian metric in G for $x, y \in G$ is defined by

$$
c_{G}(x, y)=\sup _{z \in \partial G} \frac{|x-y|}{|x-z||z-y|} .
$$

Definitions III

The distance ratio metric j_{G} for $x, y \in G$ is defined as

$$
j_{G}(x, y)=\log \left(1+\frac{|x-y|}{\min \{d(x), d(y)\}}\right),
$$

where $d(x)=d(x, \partial G)$ is the Euclidean distance from x to ∂G.

Inequalities between the Cassinian and other metrics I

Lemma

(1) The function $f(x)=x^{-1} \log (1+x)$ is decreasing on $(0, \infty)$.
(2) Let $a>0$. The function

$$
g(x)=\frac{\log a x}{a-\frac{1}{x}}
$$

is increasing on $(0, \infty)$.

Inequalities between the Cassinian and other metrics II

(3) The function

$$
h(x)=\frac{\log \frac{1+x}{1-x}}{\frac{1}{1-x}-\frac{1}{1+x}}
$$

is decreasing on $(0,1)$.
(4) Let $x \in(0,1)$. The function

$$
f(b)=\frac{\log \left(1+\frac{b}{1-x}\right)}{\log \left(1+\frac{b}{(1-x)(b+1-x)}\right)},
$$

is increasing on $(0,2)$.

Inequalities between the Cassinian and other metrics III

Theorem

For all $x, y \in \mathbb{B}^{n}$ we have

$$
j_{\mathbb{B}^{n}}(x, y) \leq a \log \left(1+c_{\mathbb{B}^{n}}(x, y)\right)
$$

where

$$
a=\frac{\log \left(\frac{1+\alpha}{1-\alpha}\right)}{\log \left(\frac{1+2 \alpha-\alpha^{2}}{\left(1-\alpha^{2}\right)}\right)} \approx 1.3152
$$

and $\alpha \in(0,1)$ is the solution of the equation

$$
\left(1+t^{2}\right) \log \frac{1+t}{1-t}+\left(t^{2}-2 t-1\right) \log \frac{1+2 t-t^{2}}{1-t^{2}}=0
$$

Inequalities between the Cassinian and other metrics IV

For a domain $G \subsetneq \mathbb{R}^{n}$ we define the quantity

$$
\hat{c}_{G}(x, y)=\frac{|x-y|}{|x-z||z-y|^{\prime}},
$$

where $x, y \in G \subsetneq \mathbb{R}^{n}$ and
$z \in \partial G \cap S^{n-1}(x, d(x))$ s.t $|z-y|$ is minimal, if $d(x) \leq d(y)$, $z \in \partial G \cap S^{n-1}(y, d(y))$ s.t $|z-x|$ is minimal, if $d(y)<d(x)$.

Clearly for all domains G and for all points $x, y \in G$ there holds $\hat{c}_{G}(x, y) \leq c_{G}(x, y)$.

Inequalities between the Cassinian and other metrics

Theorem

For all $x, y \in \mathbb{B}^{n}$ we have

$$
j_{\mathbb{B}^{n}}(x, y) \leq \hat{c}_{\mathbb{B}^{n}}(x, y)
$$

Moreover, the right hand side cannot be replaced with $\lambda \hat{c}_{\mathbb{B}^{n}}(x, y)$ for any $\lambda \in(0,1)$.

Inequalities between the Cassinian and other metrics VI

Corollary

For all $x, y \in \mathbb{B}^{n}$ we have

$$
j_{\mathbb{B}^{n}}(x, y) \leq c_{\mathbb{B}^{n}}(x, y)
$$

Moreover, the right hand side cannot be replaced with $\lambda c_{\mathbb{B}^{n}}(x, y)$ for any $\lambda \in(0,1)$.

A formula for $s_{\mathbb{B}^{2}}$

Theorem

Let $a=\alpha+i \beta, \alpha, \beta>0$, be a point in the unit disk. If $|a-1 / 2|>1 / 2$, then $s_{\mathbb{B}^{2}}(a, \bar{a})=|a|$ and otherwise

$$
s_{\mathbb{B}^{2}}(a, \bar{a})=\frac{\beta}{\sqrt{(1-\alpha)^{2}+\beta^{2}}}
$$

Proof. From the definition of the triangular ratio metric it follows that

$$
s_{\mathbb{B}^{2}}(a, \bar{a})=\frac{|a-\bar{a}|}{|a-z|+|\bar{a}-z|}=\frac{2 \operatorname{lm}(a)}{|a-z|+|\bar{a}-z|}
$$

A formula for $s_{\mathbb{B}^{2}}$ II

For $y=a, x=\bar{a}$

A formula for $s_{\mathbb{B}^{2}}$ III

for some point $z=u+i v$. In order to find z we consider the ellipse

$$
E(c)=\{w:|a-w|+|\bar{a}-w|=c\}
$$

and require that (1) $E(c) \subset \overline{\mathbb{B}}^{2}$, (2) $E(c) \cap \partial \mathbb{B}^{2} \neq \varnothing$ and the x - coordinate of the point of contact of $E(c)$ and the unit circle is unique. Both requirements (1) and (2) can be met for a suitable choice of c. The major and minor semiaxes of the ellipse are $c / 2$ and $\sqrt{(c / 2)^{2}-\beta^{2}}$, respectively. The point of contact can be obtained by solving the system

A formula for $s_{\mathbb{B}^{2}}$ IV

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
\frac{(x-\alpha)^{2}}{(c / 2)^{2}-\beta^{2}}+\frac{y^{2}}{(c / 2)^{2}}=1 .
\end{array}\right.
$$

Solving this system yields a quadratic equation for x with the discriminant

$$
D=64\left(c^{2}-4 \beta^{2}\right)\left(\alpha^{2} c^{2}+\beta^{2}\left(c^{2}-4\right)\right) .
$$

The uniqueness requirement for x requires that $D=0$ and hence

$$
c=\frac{2 \beta}{\sqrt{\alpha^{2}+\beta^{2}}} .
$$

In this case

A formula for $s_{\mathbb{B}^{2}}$

$$
x=\frac{1}{32 \beta^{2}} 8 \alpha c^{2}=\frac{\alpha}{\alpha^{2}+\beta^{2}}
$$

Consider first the case when $\frac{\alpha}{\alpha^{2}+\beta^{2}}=1$. These points define the circle $|w-1 / 2|=1 / 2$ and we have $\frac{\alpha}{\alpha^{2}+\beta^{2}}>1$ if and only if $|w-1 / 2|<1 / 2$. In the case $\frac{\alpha}{\alpha^{2}+\beta^{2}}>1$ the contact point is $z=(1,0)$, by symmetry, whereas in the case $\frac{\alpha}{\alpha^{2}+\beta^{2}}<1$ the point is

$$
z=\left(x, \sqrt{1-x^{2}}\right)=\left(\frac{\alpha}{\alpha^{2}+\beta^{2}}, \frac{\sqrt{\left(\alpha^{2}+\beta^{2}\right)^{2}-\alpha^{2}}}{\alpha^{2}+\beta^{2}}\right) .
$$

We now compute the focal sum c in both cases

A formula for $s_{\mathbb{B}^{2}}$

$$
\left\{\begin{array}{l}
c=\frac{2 \beta}{\sqrt{\alpha^{2}+\beta^{2}}}=\frac{2 \mid m a}{|a|}, \quad \text { if } \quad|a-1 / 2| \geq 1 / 2, \\
c=2|a-(1,0)|=2 \sqrt{\beta^{2}+(1-\alpha)^{2}}, \quad \text { if } \quad|a-1 / 2| \leq 1 / 2 .
\end{array}\right.
$$

Finally we see that

$$
s_{\mathbb{B}^{2}}(a, \bar{a})=\frac{|a-\bar{a}|}{c}=|a|, \quad \text { if }|a-1 / 2| \geq 1 / 2,
$$

otherwise

$$
s_{\mathbb{B}^{2}}(a, \bar{a})=\frac{|a-\bar{a}|}{c}=\frac{\beta}{\sqrt{\beta^{2}+(1-\alpha)^{2}}}=\frac{\operatorname{Im} a}{\sqrt{(1-\operatorname{Re}(a))^{2}+(\operatorname{Im}(a))^{2}}}
$$

A formula for $s_{\mathbb{B}^{2}}$ VII

Theorem
Let $x, y \in \mathbb{B}^{n}$ with $|x|=|y|$ and $z \in \partial \mathbb{B}^{n}$ such that $|y-z|<|x-z|$ and

$$
\not \subset(y, z, 0)=\Varangle(0, z, x)=\gamma .
$$

Then $\cos \gamma=(|x-z|+|y-z|) / 2$ and hence $|y-z|<1$. Moreover, $0, x, y, z$ are concyclic.

A formula for $s_{\mathbb{B}^{2}}$ VIII

Corollary

Let $D \subset \mathbb{B}^{n}$ be a domain and let $x,-x \in D$. Then

$$
S_{D}(x,-x) \geq|x| .
$$

A formula for $s_{\mathbb{B}^{2}}$ IX

Lemma

Let B_{1} be a disk with center $(1 / 2,0)$ and radius $1 / 2$ and $x, y \in B_{1}$. Then

$$
s_{\mathbb{B}^{2}}(x, y) \geq \frac{|x-y|}{\sqrt{1-|x|^{2}}+\sqrt{1-|y|^{2}}}
$$

Here equality holds for $x, y \in \partial B_{1},|x|=|y|$.

A formula for $s_{\mathbb{B}^{2}}$

Lemma

Let $x, y \in \mathbb{B}^{n}, x \neq \pm y$ and $z=(x+y) /|x+y| \in \partial \mathbb{B}^{n}$. Let $x_{1}, y_{1} \in \partial B^{2}((x+y) / 2,|x-y| / 2)$ be points with $\left|x_{1}-y_{1}\right|=|x-y|$ and $\left|x_{1}\right|=\left|y_{1}\right|$. Then $x_{1}, y_{1} \in \mathbb{B}^{n}$ and $|x-z|+|y-z| \leq\left|x_{1}-z\right|+\left|y_{1}-z\right|=\sqrt{4+2\left(|x|^{2}+|y|^{2}\right)-4|x+y|}$ and

$$
|x-z||y-z| \leq\left|x_{1}-z\right|\left|y_{1}-z\right|=1+\frac{|x|^{2}+|y|^{2}}{2}-|x+y|
$$

A formula for $s_{\mathbb{B}^{2}}$

Theorem

Let $x, y \in \mathbb{B}^{n}, x \neq \pm y$ and $z=(x+y) /|x+y| \in \partial \mathbb{B}^{n}$. Let $x_{1}, y_{1} \in \partial B^{2}((x+y) / 2,|x-y| / 2)$ be points with $\left|x_{1}-y_{1}\right|=|x-y|$ and $\left|x_{1}\right|=\left|y_{1}\right|$. Then

$$
\begin{aligned}
s_{\mathbb{B}^{n}}(x, y) & \geq s_{\mathbb{B}^{n}}\left(x_{1}, y_{1}\right)=\frac{|x-y|}{\sqrt{4+2\left(|x|^{2}+|y|^{2}\right)-4|x+y|}} \\
& =\frac{|x-y|}{\sqrt{|x-y|^{2}+(2-|x+y|)^{2}}}
\end{aligned}
$$

and

$$
c_{\mathbb{B}^{n}}(x, y) \geq c_{\mathbb{B}^{n}}\left(x_{1}, y_{1}\right)=\frac{|x-y|}{1+\frac{|x|^{2}+|y|^{2}}{2}-|x+y|}
$$

A formula for $s_{\mathbb{B}^{2}}$ XII

Theorem

Let $x \in(0,1), y \in \mathbb{B}^{2} \backslash\{0\}$, Im $y \geq 0$, with $|y|=|x|$ and denote $\omega=\Varangle(x, 0, y)$. Then the supremum in (??) is attained at $z=e^{i \theta}$ for

$$
\theta= \begin{cases}\frac{\omega}{2}, & \text { if } \sin \frac{\pi-\omega}{2} \geq|x|, \\ \frac{\omega-\pi}{2}+\arcsin \frac{\sin \frac{\pi-\omega}{2}}{|x|}, & \text { if } \sin \frac{\pi-\omega}{2}<|x| .\end{cases}
$$

Main Result I

Theorem

Suppose that D is a subdomain of \mathbb{B}^{n}. Then for $x, y \in D$ we have

$$
2 s_{D}(x, y) \leq c_{D}(x, y)
$$

In the case $D=\mathbb{B}^{n}$, the constant 2 in the left-hand side is best possible.

Main Result II

Proof.

By a simple geometric observation we see that

$$
\begin{equation*}
\inf _{w \in \partial \mathbb{B}^{n}}|x-w||w-y| \leq 1 \tag{1}
\end{equation*}
$$

In fact, for given $x, y \in \mathbb{B}^{n}$, let $x^{\prime}, y^{\prime} \in \mathbb{B}^{n}$ be the points such that $y^{\prime}-x^{\prime}=y-x$ and $y^{\prime}=-x^{\prime}$. Then the size of the maximal Cassinian oval $C(x, y)$ with foci x, y which is contained in the closed unit ball is not greater than that of the maximal Cassinian oval $C\left(x^{\prime}, y^{\prime}\right)$ with foci x^{\prime}, y^{\prime}, see the Figure 2.

Main Result III

Figure : The maximal Cassinian oval $C(x, y)$ is not larger than the maximal Cassinian oval $C\left(x^{\prime}, y^{\prime}\right)$.

Main Result IV

This implies that

$$
\begin{aligned}
\inf _{w \in \partial \mathbb{B}^{n}}|x-w||w-y| & \leq \inf _{w \in \partial \mathbb{B}^{n}}\left|x^{\prime}-w\right|\left|w-y^{\prime}\right| \\
& =1-\left(\frac{|x-y|}{2}\right)^{2} \leq 1 .
\end{aligned}
$$

Therefore, for $x, y \in D \subset \mathbb{B}^{n}$, we have that

$$
\begin{equation*}
\inf _{w \in \partial D}\left|x-w\left\|w-y\left|\leq \inf _{w \in \partial \mathbb{B}^{n}}\right| x-w\right\| w-y\right| \leq 1 \tag{2}
\end{equation*}
$$

For $x=y \in D$, the desired inequality is trivial. For $x, y \in D$ with $x \neq y$, it follows from the inequality of

Main Result

arithmetic and geometric means and the inequality (2) that

$$
\begin{aligned}
\frac{c_{D}(x, y)}{2 s_{D}(x, y)} & =\frac{\inf _{w \in \partial D}(|x-w|+|w-y|)}{2 \inf _{w \in \partial D}(|x-w||w-y|)} \\
& \geq \frac{\inf _{w \in \partial D} \sqrt{|x-w||w-y|}}{\inf _{w \in \partial D}(|x-w||w-y|)} \\
& =\frac{\sqrt{\inf _{w \in \partial D}(|x-w||w-y|)}}{\inf _{w \in \partial D}(|x-w||w-y|)} \\
& \geq 1
\end{aligned}
$$

Main Result VI

For the sharpness of the constant in the case of the unit ball, let $y=-x \rightarrow 0$. It is easy to see that both the inequality of arithmetic and geometric means and the inequality (1) will asymptotically become equalities. This completes the proof. \square

Main Result VII

Corollary

Let $D \subset \mathbb{R}^{n}$ be a bounded domain. Then, for $x, y \in D$,

$$
c_{D}(x, y) \geq \frac{2}{\sqrt{n /(2 n+2)} \operatorname{diam}(\mathrm{D})} s_{D}(x, y)
$$

References

围 P．Hariri，R．Klén，M．Vuorinen，and X．Zhang：Some remarks on the Cassinian metric．－arXiv： 1504.01923 ［math．CA］11pp．

固 Z．Ibragimov：The Cassinian metric of a domain in $\overline{\mathbb{R}}^{n}$ ．Uzbek Math．Journal， 1 （2009），53－67．

圊 Z．Ibragimov，M．R．Mohapatra，S．K．Sahoo，and X．－H．Zhang：Geometry of the Cassinian metric and its inner metric．arXiv：1412．4035v2［math．MG］， 12pp．
围 R．Klén，M．R．Mohapatra，and S．K．Sahoo：
Geometric properties of the Cassinian metric． arXiv：1511．01298［math．MG］，16pp．

